EcotoxicologyPub Date : 2024-11-01Epub Date: 2024-08-08DOI: 10.1007/s10646-024-02794-4
Xiaoxuan Hu, Mikko Mäkinen, Jouni Taskinen, Juha Karjalainen
{"title":"Sulfate sensitivity of early life stages of freshwater mussels Unio crassus and Margaritifera margaritifera.","authors":"Xiaoxuan Hu, Mikko Mäkinen, Jouni Taskinen, Juha Karjalainen","doi":"10.1007/s10646-024-02794-4","DOIUrl":"10.1007/s10646-024-02794-4","url":null,"abstract":"<p><p>Sulfate is increasingly found in elevated concentrations in freshwater ecosystems due to anthropogenic activities. Chronic exposure to sulfate has been reported to cause sublethal effects on freshwater invertebrates. Previous sulfate toxicity tests have mostly been conducted in hard or moderately hard waters, and research on species inhabiting soft water is needed, given that freshwater organisms face heightened sensitivity to toxicants in water of lower hardness. In the present study, we examined sulfate sensitivity of two endangered freshwater mussel species, Unio crassus, and Margaritifera margaritifera. Glochidia and juveniles of both species were subjected to acute and/or chronic sulfate exposures in soft water to compare sulfate sensitivity across age groups, and effective concentrations (EC)/lethal concentrations (LC) values were estimated. Mussels were individually exposed to allow relatively larger numbers of replicates per treatment. Chronic sulfate exposure significantly reduced growth, foot movement, and relative water content (RWC) in juvenile mussels of M. margaritifera. Mussels at younger stages were not necessarily more sensitive to sulfate. In the acute tests, LC50 of glochidia of M. margaritifera and U. crassus was 1301 and 857 mg/L, respectively. Chronic LC10 was 843 mg/L for 3-week-old U. crassus juveniles, 1051 mg/L for 7-week-old M. margaritifera juveniles, and 683 mg/L for 2-year-old M. margaritifera juveniles. True chronic Lowest Effective Concentration for 7-week-old M. margaritifera may be within the 95% interval of EC10 based on RWC (EC10 = 446 mg/L, 95%CI = 265-626 mg/L). Our study contributed to the understanding of sulfate toxicity to endangered freshwater mussel species in soft water.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"996-1008"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-11-01Epub Date: 2024-08-31DOI: 10.1007/s10646-024-02799-z
Christian Villamarín, Melanie Loachamin, Milton Sosa, Mishell Donoso, Genoveva Granda-Albuja, Pablo Castillejo, Blanca Ríos-Touma
{"title":"Nectopsyche sp (Trichoptera: Leptoceridae) sublethal effects caused by different concentrations of arsenic (As): a biochemical markers approach.","authors":"Christian Villamarín, Melanie Loachamin, Milton Sosa, Mishell Donoso, Genoveva Granda-Albuja, Pablo Castillejo, Blanca Ríos-Touma","doi":"10.1007/s10646-024-02799-z","DOIUrl":"10.1007/s10646-024-02799-z","url":null,"abstract":"<p><p>Environmental impacts related to arsenic (As) contamination are a persistent issue of particular interest in Latin American countries with increasing mining activities. In Ecuador, the redefinition of public policies to promote the increase in mining since 2008 has led to a significant rise in the presence of this heavy metal in rivers and effluents, sometimes exceeding the 0.1 mg L<sup>-1</sup>, limit recommended by Ecuadorian Environmental Regulations. This study aimed to evaluate the sublethal effects through the detection of biochemical biomarker changes (Catalase, Antioxidant capacity by FRAP, and Glutathione S-transferase) generated in larvae of Nectopsyche sp following prolonged exposure to different concentrations of As (C1 = 0.05 mg L<sup>-1</sup>, C2 = 0.1 mg L<sup>-1</sup>, C3 = 0.8 mg L<sup>-1</sup>) in a controlled environment, emulating the maximum limits allowed by current Ecuadorian legislation. While As concentration levels in water increased, so did levels in the tissue of Nectopsyche sp specimens. On the other hand, behavioral parameters (mortality and mobility) did not show differences in either time or As concentrations. However, both Catalase and Antioxidant capacity by FRAP levels tended to decrease with increasing As concentration, and in both cases, the differences were significant. Additionally, Glutathione S-transferase activity did not increase significantly. These results preliminarily demonstrate that biochemical responses change with varying As concentrations in Nectopsyche sp and are affected at behavioral and biochemical levels produced by the As at chronic levels.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1062-1073"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-11-01Epub Date: 2024-09-04DOI: 10.1007/s10646-024-02773-9
A L Allert, D Cleveland, R J DiStefano, M L Wildhaber, L K Lueckenhoff
{"title":"Chronic effects of metal releases from historical mining on threatened crayfish in Madison County Missouri, USA.","authors":"A L Allert, D Cleveland, R J DiStefano, M L Wildhaber, L K Lueckenhoff","doi":"10.1007/s10646-024-02773-9","DOIUrl":"10.1007/s10646-024-02773-9","url":null,"abstract":"<p><p>The Little St. Francis River and its tributaries drain metals-contaminated areas of the Madison County Mines National Priority List Superfund site (MCM) which was designated in 2003 to facilitate remediation of metals contamination within the MCM. One concern for natural resource trustees in the MCM is the potential effects of elevated metals concentrations on the federally threatened St. Francis River crayfish, Faxonius quadruncus, which has a geographic range that is limited to the St. Francis River watershed. A survey of riffle-dwelling crayfish, in-situ cage study, and laboratory toxicity tests were conducted to assess the effects of mining-derived metals on F. quadruncus and other crayfish species in the MCM. Crayfish densities were significantly greater at sites upstream of metals releases from historical mining (henceforth mining releases) compared to densities at sites downstream of mining releases, and metals concentrations in whole-body crayfish, surface water, sediments, macroinvertebrates, fish, and plant material were greater at sites downstream of mining releases compared to sites upstream of mining releases. Crayfish densities were also negatively correlated with consensus-based adverse effects indices, expressed as surface-water toxic units and sediment probable effects quotients. Decreased growth and increased mortality during cage and laboratory studies were likely due to exposure to, and subsequently uptake of, elevated concentrations of metals. Crayfish in all studies were found to bioaccumulate metals, which supports their utility as bioindicators of metals contamination. Study results show that elevated metals concentrations associated with mining releases in the MCM continue to adversely affect biota, including the federally threatened F. quadruncus.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1096-1121"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-11-01Epub Date: 2024-08-31DOI: 10.1007/s10646-024-02800-9
Diego Ferreira Gomes, Hevelyn Plácido Brito, Julia Gomes do Vale, Thandy Júnior da Silva Pinto, Raquel Aparecida Moreira, Odete Rocha
{"title":"Toxicity of isolated and mixed metals to a native Amazonian ostracod and ecological risk assessment.","authors":"Diego Ferreira Gomes, Hevelyn Plácido Brito, Julia Gomes do Vale, Thandy Júnior da Silva Pinto, Raquel Aparecida Moreira, Odete Rocha","doi":"10.1007/s10646-024-02800-9","DOIUrl":"10.1007/s10646-024-02800-9","url":null,"abstract":"<p><p>In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO<sub>4</sub>; ZnCl<sub>2</sub>; CdCl<sub>2</sub> and HgCl<sub>2</sub>). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1074-1085"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-10-29DOI: 10.1007/s10646-024-02822-3
Yan Costa Gonçalves, Bruno Hofstatter da Silva, Camila Reis de Godoy, Francisco Tadeu Rantin, Ana Lúcia Kalinin, Diana Amaral Monteiro
{"title":"Subchronic exposure to nonylphenol ethoxylate (NPE) induces cardiotoxicity and oxidative stress in American bullfrog tadpoles: a mechanistic approach.","authors":"Yan Costa Gonçalves, Bruno Hofstatter da Silva, Camila Reis de Godoy, Francisco Tadeu Rantin, Ana Lúcia Kalinin, Diana Amaral Monteiro","doi":"10.1007/s10646-024-02822-3","DOIUrl":"https://doi.org/10.1007/s10646-024-02822-3","url":null,"abstract":"<p><p>Tropical regions, particularly those with high levels of endemism such as South America, harbor a diverse array of amphibian species. However, these regions often lack specific regulations governing the release of emerging contaminants, including the surfactant nonylphenol ethoxylate (NPE), into water bodies, which can have devastating consequences for these sensitive ecosystems. This study evaluated the sublethal effects of 16-day subchronic exposure to NPE at an environmentally relevant concentration of 30 µg/L on American bullfrog (Lithobates catesbeianus) tadpoles using multiple endpoints, including biometric parameters, antioxidant responses, oxidative stress biomarkers, heart rate, and myocardial contractility. Our results revealed that exposure to NPE elicited a range of harmful effects on tadpoles, including significant reductions in hepatic and ventricular mass, disruptions in antioxidant defenses leading to oxidative stress-mediated damage in cardiac, hepatic, and muscular tissues, and changes in heart function such as negative inotropism and lusitropism, and tachycardia. These sublethal effects could have significant ecological impacts, affecting not only immediate survival but also compromising overall fitness through the reallocation of energy reserves.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-10-01Epub Date: 2024-07-22DOI: 10.1007/s10646-024-02791-7
Alice L Coleman, Suzanne Edmands
{"title":"Phylogeny predicts sensitivity in aquatic animals for only a minority of chemicals.","authors":"Alice L Coleman, Suzanne Edmands","doi":"10.1007/s10646-024-02791-7","DOIUrl":"10.1007/s10646-024-02791-7","url":null,"abstract":"<p><p>There are substantial gaps in our empirical knowledge of the effects of chemical exposure on aquatic life that are unlikely to be filled by traditional laboratory toxicity testing alone. One possible alternative of generating new toxicity data is cross-species extrapolation (CSE), a statistical approach in which existing data are used to predict the effect of a chemical on untested species. Some CSE models use relatedness as a predictor of chemical sensitivity, but relatively little is known about how strongly shared evolutionary history influences sensitivity across all chemicals. To address this question, we conducted a survey of phylogenetic signal in the toxicity data from aquatic animal species for a large set of chemicals using a phylogeny inferred from taxonomy. Strong phylogenetic signal was present in just nine of thirty-six toxicity datasets, and there were no clear shared properties among those datasets with strong signal. Strong signal was rare even among chemicals specifically developed to target insects, meaning that these chemicals may be equally lethal to non-target taxa, including chordates. When signal was strong, distinct patterns of sensitivity were evident in the data, which may be informative when assembling toxicity datasets for regulatory use. Although strong signal does not appear to manifest in aquatic toxicity data for most chemicals, we encourage additional phylogenetic evaluations of toxicity data in order to guide the selection of CSE tools and as a means to explore the patterns of chemical sensitivity across the broad diversity of life.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"921-936"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-10-01Epub Date: 2024-07-12DOI: 10.1007/s10646-024-02784-6
A Rielly, S Dahms-Verster, R Greenfield
{"title":"Biomarker responses in Danio rerio following an acute exposure (96 h) to e-waste leachate.","authors":"A Rielly, S Dahms-Verster, R Greenfield","doi":"10.1007/s10646-024-02784-6","DOIUrl":"10.1007/s10646-024-02784-6","url":null,"abstract":"<p><p>Electronic waste (e-waste) has been identified as an emerging pollutant and is the fastest growing waste stream at the present time. Significant technological development and modernization within the last decade has led to the rapid accumulation of outdated, broken and unwanted electrical and electronic equipment (EEE). Electronic products mainly consist of a range of metal containing components that, when disposed of improperly, could result in metal constituents leached into the environment and posing a health risk to humans and animals alike. Metal exposure can induce oxidative stress in organisms, which could lead to synergistic, antagonistic and additive effects. The metals found highest in abundance in the simulated e-waste leachate, were nickel (Ni), barium (Ba), zinc (Zn), lithium (Li), iron (Fe), aluminium (Al) and copper (Cu). An acute exposure study was conducted over a 96 h period to determine the potential toxicity of e-waste on the test organism Danio rerio. Biomarker analysis results to assess the biochemical and physiological effects induced by e-waste leachate, showed a statistically significant effect induced on acetylcholinesterase activity, superoxide dismutase, catalase activity, reduced glutathione content, glutathione s-transferase, malondialdehyde and glucose energy available. The Integrated Biomarker Response (IBRv2) analysis revealed a greater biomarker response induced as the exposure concentration of e-waste leachate increased.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"859-874"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-10-01Epub Date: 2024-07-13DOI: 10.1007/s10646-024-02786-4
Jaqueline Aparecida da Silva, Cliver Fernandes Farder-Gomes, Angel Roberto Barchuk, Osmar Malaspina, Roberta Cornélio Ferreira Nocelli
{"title":"Sublethal exposure to thiamethoxam and pyraclostrobin affects the midgut and Malpighian tubules of the stingless bee Frieseomelitta varia (Hymenoptera: Apidae: Meliponini).","authors":"Jaqueline Aparecida da Silva, Cliver Fernandes Farder-Gomes, Angel Roberto Barchuk, Osmar Malaspina, Roberta Cornélio Ferreira Nocelli","doi":"10.1007/s10646-024-02786-4","DOIUrl":"10.1007/s10646-024-02786-4","url":null,"abstract":"<p><p>The stingless bee Frieseomelitta varia Lepeletier 1836 (Hymenoptera: Apidae) is an essential pollinator in natural and agricultural ecosystems in the Neotropical region. However, these bees may be exposed to pesticides during foraging, which can affect both individuals and their colonies. One example comes from the use of pyraclostrobin (a fungicide) and thiamethoxam (an insecticide) for pest control in pepper crops, which F. varia visits. This study aimed to evaluate the isolated and combined sublethal effects of thiamethoxam (TMX) (0.000543 ng a.i./µL) and pyraclostrobin (PYR) (1.5 ng i.a./µL) on the morphology of the midgut and Malpighian tubules of F. varia workers. Results showed that both pesticides, regardless of the exposure time (through feeding during 48 h or 96 h), disturbed the morphology of the analyzed organs. Specifically, F. varia exposed orally to sublethal concentrations of thiamethoxam and pyraclostrobin, either alone or in combination, exhibited a higher rate of damage to the midgut (e.g., vacuolization, apocrine secretion, and cellular elimination) compared to the bees in the control groups, both after 48 h and 96 h of exposure. In Malpighian tubules, vacuolation is the only damage present. As the observed morphological alterations likely compromise the excretion and absorption functions, exposure to pyraclostrobin and thiamethoxam may lead to disturbances at both the individual and colony levels. These results highlight the urgent need for a future reassessment of the safety of fungicides and insecticides regarding their potential effects on bee populations.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"875-883"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-10-01Epub Date: 2024-07-13DOI: 10.1007/s10646-024-02783-7
Yan-Mei Da, Shun-Shun Li, Yan-Qi Li, Le-Yu Deng, Ming-Jun Li, Tao Huang, Qing-Ye Sun, Jazbia Shirin, Guo-Wei Zhou
{"title":"Effects of cadmium on the intestinal health of the snail Bradybaena ravida Benson.","authors":"Yan-Mei Da, Shun-Shun Li, Yan-Qi Li, Le-Yu Deng, Ming-Jun Li, Tao Huang, Qing-Ye Sun, Jazbia Shirin, Guo-Wei Zhou","doi":"10.1007/s10646-024-02783-7","DOIUrl":"10.1007/s10646-024-02783-7","url":null,"abstract":"<p><p>The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg<sup>-1</sup>). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"849-858"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcotoxicologyPub Date : 2024-10-01Epub Date: 2024-07-18DOI: 10.1007/s10646-024-02790-8
Debanjali Chakraborty, Azubuike Victor Chukwuka, Sanjoy Podder, Pramita Sharma, Shovonlal Bhowmick, Tapan Kumar Mistri, Nimai Chandra Saha
{"title":"Effects of α-olefin sulfonate (AOS) on Tubifex tubifex: toxicodynamic-toxicokinetic inferences from the general unified threshold (GUTS) model, biomarker responses and molecular docking predictions.","authors":"Debanjali Chakraborty, Azubuike Victor Chukwuka, Sanjoy Podder, Pramita Sharma, Shovonlal Bhowmick, Tapan Kumar Mistri, Nimai Chandra Saha","doi":"10.1007/s10646-024-02790-8","DOIUrl":"10.1007/s10646-024-02790-8","url":null,"abstract":"<p><p>We investigated the potential ecological risks and harm to aquatic organisms posed by anionic surfactants such as α-olefin sulfonate (AOS), which are commonly found in industrial and consumer products, including detergents. This study assessed acute (96-h) and subchronic (14-day) responses using antioxidant activity, protein levels, and histopathological changes in Tubifex tubifex exposed to different AOS concentrations (10% of the LC<sub>50</sub>, 20% of the LC<sub>50</sub>, and a control). Molecular docking was used to investigate the potential interactions between the key stress biomarker enzymes (superoxide dismutase, catalase, and cytochrome c oxidase) of Tubifex tubifex. Acute AOS exposure showed a concentration-dependent decrease in survival, and the general unified threshold (GUTS) model revealed that survivorship is linked to individual response patterns rather than random (stochastic) fluctuations. The GUTS model also revealed dose-dependent toxicity patterns in Tubifex tubifex exposed to α-olefin sulfonate (AOS), with adaptive mechanisms at lower concentrations but significant increases in mortality beyond a certain threshold, emphasizing the role of the AOS concentration in shaping its toxicological impact. Exposure to AOS disrupted antioxidant activity, inducing oxidative stress, with GST and GPx showing positive associations with surfactant concentration and increased lipid peroxidation (elevated MDA levels); moreover, AOS exposure decreased protein concentration, signifying disturbances in vital cellular processes. Histopathological examinations revealed various tissue-level alterations, including cellular vacuolation, cytoplasmic swelling, inflammation, necrosis, and apoptosis. Molecular docking analysis demonstrated interactions between AOS and enzymes (-catalase, superoxide dismutase, and cytochrome c oxidase) in Tubifex tubifex, including hydrophobic and hydrogen bond interactions, with the potential to disrupt enzyme structures and activities, leading to cellular process disruptions, oxidative stress, and tissue damage. According to the species sensitivity distribution (SSD), the difference in toxicity between Tilapia melanopleura (higher sensitivity) and Daphnia magna (low sensitivity) to AOS suggests distinct toxicokinetic and toxicodynamic mechanisms attributable to more complex physiology in Tilapia and efficient detoxification in Daphnia due to its smaller size.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"905-920"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}