Yanchao Chai, Haiqing Wang, Mengru Lv, Jiaxin Yang
{"title":"轮胎磨损颗粒沥滤液的携带效应威胁到一种模式浮游动物的多代繁殖。","authors":"Yanchao Chai, Haiqing Wang, Mengru Lv, Jiaxin Yang","doi":"10.1007/s10646-024-02809-0","DOIUrl":null,"url":null,"abstract":"<p><p>The toxic additives that leach from tire wear particles (TWPs) cause mass die-offs in fish and impact zooplankton as secondary consumers in the aquatic food web. In addition to the direct impacts of TWP leachate on a single generation, there may be potential delayed carryover effects across multiple generations from parental exposure, which may amplify the adverse effects of the leachate on individual reproduction and, consequently, on the entire population. In this study, the single, multiple, and transgenerational effects of TWP leachate at various concentrations on the reproduction and lifespan of the rotifer Brachionus calyciflorus were investigated. The results indicated that the lifespan and reproductive output of rotifers exposed to TWP leachate (0-1500 mg/L) decreased as the concentration increased above 250 mg/L. There was a clear multigenerational effect of TWP leachate on rotifer reproduction. The inhibition rates were consistently greater at 500 mg/L than at 250 mg/L leachate. Although the reproduction of rotifers exposed to 250 mg/L TWP leachate increased in the first two generations (P and F1), it was inhibited in subsequent generations. The inhibitory effect of 500 mg/L TWP leachate persisted across all generations, leading to population extinction by the F4 generation. A significant transgenerational effect of TWP leachate was found on reproduction. The adverse impact of exposure to 250 mg/L leachate for fewer than three generations could be reversed when offspring were transferred to clean media. However, this recovery was not observed after continuous exposure for more than four generations. Exposure to high-dose TWP leachate also caused irreversible damage to reproduction. Therefore, TWP leachate can result in cascading toxicity on zooplankton populations through carryover and cumulative effects on reproduction.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carryover effects of tire wear particle leachate threaten the reproduction of a model zooplankton across multiple generations.\",\"authors\":\"Yanchao Chai, Haiqing Wang, Mengru Lv, Jiaxin Yang\",\"doi\":\"10.1007/s10646-024-02809-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The toxic additives that leach from tire wear particles (TWPs) cause mass die-offs in fish and impact zooplankton as secondary consumers in the aquatic food web. In addition to the direct impacts of TWP leachate on a single generation, there may be potential delayed carryover effects across multiple generations from parental exposure, which may amplify the adverse effects of the leachate on individual reproduction and, consequently, on the entire population. In this study, the single, multiple, and transgenerational effects of TWP leachate at various concentrations on the reproduction and lifespan of the rotifer Brachionus calyciflorus were investigated. The results indicated that the lifespan and reproductive output of rotifers exposed to TWP leachate (0-1500 mg/L) decreased as the concentration increased above 250 mg/L. There was a clear multigenerational effect of TWP leachate on rotifer reproduction. The inhibition rates were consistently greater at 500 mg/L than at 250 mg/L leachate. Although the reproduction of rotifers exposed to 250 mg/L TWP leachate increased in the first two generations (P and F1), it was inhibited in subsequent generations. The inhibitory effect of 500 mg/L TWP leachate persisted across all generations, leading to population extinction by the F4 generation. A significant transgenerational effect of TWP leachate was found on reproduction. The adverse impact of exposure to 250 mg/L leachate for fewer than three generations could be reversed when offspring were transferred to clean media. However, this recovery was not observed after continuous exposure for more than four generations. Exposure to high-dose TWP leachate also caused irreversible damage to reproduction. Therefore, TWP leachate can result in cascading toxicity on zooplankton populations through carryover and cumulative effects on reproduction.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02809-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02809-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Carryover effects of tire wear particle leachate threaten the reproduction of a model zooplankton across multiple generations.
The toxic additives that leach from tire wear particles (TWPs) cause mass die-offs in fish and impact zooplankton as secondary consumers in the aquatic food web. In addition to the direct impacts of TWP leachate on a single generation, there may be potential delayed carryover effects across multiple generations from parental exposure, which may amplify the adverse effects of the leachate on individual reproduction and, consequently, on the entire population. In this study, the single, multiple, and transgenerational effects of TWP leachate at various concentrations on the reproduction and lifespan of the rotifer Brachionus calyciflorus were investigated. The results indicated that the lifespan and reproductive output of rotifers exposed to TWP leachate (0-1500 mg/L) decreased as the concentration increased above 250 mg/L. There was a clear multigenerational effect of TWP leachate on rotifer reproduction. The inhibition rates were consistently greater at 500 mg/L than at 250 mg/L leachate. Although the reproduction of rotifers exposed to 250 mg/L TWP leachate increased in the first two generations (P and F1), it was inhibited in subsequent generations. The inhibitory effect of 500 mg/L TWP leachate persisted across all generations, leading to population extinction by the F4 generation. A significant transgenerational effect of TWP leachate was found on reproduction. The adverse impact of exposure to 250 mg/L leachate for fewer than three generations could be reversed when offspring were transferred to clean media. However, this recovery was not observed after continuous exposure for more than four generations. Exposure to high-dose TWP leachate also caused irreversible damage to reproduction. Therefore, TWP leachate can result in cascading toxicity on zooplankton populations through carryover and cumulative effects on reproduction.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.