{"title":"Analysis of AgNPs@AuNPs/GO’s Impact on Water-Based Drilling Muds and Comparison with Graphane, GO, AuNPs/GO’s Effects: Labs Research","authors":"Abdullah Özkan and Semih Tıknas","doi":"10.1149/2162-8777/ad4f14","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4f14","url":null,"abstract":"We investigateed the effect of AgNPs@AuNPs/GO on the rheological and filtration properties of sodium-bentonite water based drilling muds (Na-bentonite WBDM) and compared the possible effects of graphene, graphene oxide (GO), and graphene oxide functionalized with gold nanoparticles (AuNPs/GO) on Na-bentonite WBDM. Graphene, AuNPs, AgNPs, GO, AuNPs/GO, and AgNPs@AuNPs/GO were initially synthesized, and subsequently subjected to scanning electron microscopy, tranmission electron microscopy, energy-dispersive X-ray analysis, reflection absoprtion infrared spectroscopy, and X-ray photoelectron spectroscopy characterization. At a rate of 0.0005% to 0.01% (w/v), synthesized and described nanoparticles were added to Na-bentonite WBDM. Rheological and filtration loss analyses of the nanomaterial-containing Na-bentonite WBDM were then performed following American Petroleum Institute Standards. According to the study’s findings, adding graphene and AgNPs/GO to drilling mud at varying rates did not have any influence on PV values when compared to spud mud; however, adding GO and AgNPs@AuNPs/GO had a positive effect of 67% and 33%. Furthermore, the addition of graphene, GO, AuNPs/GO, and AgNPs@AuNPs/GO increased the AV values by 17.6%, 44%, 18.75%, 26%, YP values; by 44.4%, 44%, 30%, 22%, 10 s values; by 55.5%, 33%, 30%, 66.6%, 10 min values; by 30.7%, 43%, 42%, 46%, filtration loss values; by 10%, 9.52%, 8.4%, 3.84%. Highlights AuNPs, AgNPs, Graphene and GO were synthesized seperatally, then GO were functionalized with AuNPs croslinked AgNPs. Nanomaterials were characterized by SEM, TEM, EDX, RAIRS and XPS. AgNPs@AuNPs/GO, which were tested for the first time in water based drilling mud.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZnSb2O4 Thin Films Synthesized by Nebulizer Spray Pyrolysis: Structural, Optical, and Optoelectrical Properties","authors":"Abdullah Alsulami","doi":"10.1149/2162-8777/ad4c97","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4c97","url":null,"abstract":"Zinc antimony oxide (ZnSb2O4) thin films were prepared by inexpensive nebulizer spray pyrolysis. X-ray diffraction analysis showed that the ZnSb2O4 thin films have a tetragonal structure. The analysis of structural indices indicate that the grain size of the ZnSb2O4 films was enhanced by expanding the thickness of the ZnSb2O4 layers, and the dislocation density was decreased. Further, the optical reflectance, R, and transmittance, T, of the ZnSb2O4 sheets, were used to investigate the optical characteristics of these layers. The optical investigations of the ZnSb2O4 films refer to an improvement in the refractive index values, Urbach energy, and absorption coefficient by boosting the thickness. Moreover, the energy gap analysis of these films shows that their energy gap decreased from 3.75 to 3.47 eV as the thickness increased. The investigation of optoelectrical characteristics involves improving the optical conductivity, electrical conductivity, optical carrier concentration, and optical mobility of the ZnSb2O4 films by growing the thickness. The nonlinear optical indices of the ZnSb2O4 layers were deduced, and it was noted that the boost in the nonlinear optical indices of these films occurred by raising the thickness. Furthermore, the ZnSb2O4 films displayed n-type semiconducting properties by the hot probe equipment.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Rani, Aqeel Ahmad Shah, K. Tariq, Akram Ibrahim, Mika Sillanpaa, Mohamad Ouladsmane, Naseem Akhtar
{"title":"Advancing Frontiers: A High-Impact Study on the Synthesis, Characterization, and Superior Device Performance of AlCr2O4/MXene Nanocomposites","authors":"M. Rani, Aqeel Ahmad Shah, K. Tariq, Akram Ibrahim, Mika Sillanpaa, Mohamad Ouladsmane, Naseem Akhtar","doi":"10.1149/2162-8777/ad4ff1","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4ff1","url":null,"abstract":"\u0000 Here we present the fabrication of a multilayer resistive memory device (ReRAM) utilizing AlCr2O4/MXene nanocomposite. Comprehensive investigations into the structural and morphological properties of the nanostructures were conducted using various characterization techniques. The fabricated device was tested by measuring I-V characteristics at different current applications which encompasses all previous results. The band gap value for the nanocomposite was reduced to 2.42 eV while that for AlCr2O4 was measured at 3.25 eV via photoluminescence spectrum. Average particle size of the AlCr2O4/MXene nanocomposite was determined to be 25 nm through powder X-ray diffraction analysis. Crystallographic analysis revealed that all crystal peaks conform to the R-3c (167) space group, indicative of a standard hexagonal crystal structure. Energy-dispersive X-ray readings provided further confirmation that all required elements are present in the sample, affirming successful synthesis of the nanocomposite. Notably, the nanocomposite demonstrated exceptional performance as an electrode material in ReRAM, as evidenced by its current-voltage characteristics, making the AlCr2O4/MXene nanocomposite suitable for a wide range of next-generation device applications.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. M. Youssef, Reem Taugary, A ATTA, Mohammed Ezzeldian
{"title":"Synthesis, Structural Investigations, and Dielectric Properties of Irradiated Flexible Polymeric Composite Films","authors":"M. M. Youssef, Reem Taugary, A ATTA, Mohammed Ezzeldian","doi":"10.1149/2162-8777/ad4f71","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4f71","url":null,"abstract":"\u0000 In this research, the casting solution manufacturing approach was used to mix polyvinyl alcohol (PVA) and copper oxide (CuO) to create the composite (PVA/CuO). X-ray diffraction analysis and Fourier transform infrared spectroscopy were applied to record the successful fabrications of the composites. Next, argon ion beams at fluencies of 2.5x1017, 5x1017, and 7.5x1017 ions.cm-2 were used to irradiate the composites. In frequencies of 50 Hz to 6 MHz, the dielectric characteristics of PVA/CuO were modified by the ion irradiation. The dielectric constant was enhanced from 39 for unmodified PVA/CuO to 356 for the irradiated composite by 7.5x1017 ions.cm-2, and the conductivity changed from 0.05x10-6 S/cm to 2.9x10-6 S/cm. However, the potential barrier decreased from 0.24 eV for PVA/CuO to 0.21, 0.16, and 0.15 eV, respectively, for 2.5x1017, 5x1017, and 7.5x1017 ions.cm-2, and the relaxation time decreased from 9.36x10-8 sec for PVA/CuO, to 6.58x10-8 sec for 7.5x1017 ions.cm-2. The results indicate that the irradiated PVA/CuO nanocomposite can be used in a number of devices such as capacitors and batteries.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Jenkins, Jiashen Tian, Yan Dou, Qiong Nian, R. Milcarek
{"title":"Solid Oxide Fuel Cells with 3D Inkjet Printing Modified LSM-YSZ Interface","authors":"C. Jenkins, Jiashen Tian, Yan Dou, Qiong Nian, R. Milcarek","doi":"10.1149/2162-8777/ad4fbf","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4fbf","url":null,"abstract":"\u0000 In this study, pillar shaped yttria-stabilized zirconia (YSZ) 3D microstructures with ~60 to 90 m diameter and 12 to 20 m height are fabricated by 3D inkjet printing to improve the topology of the electrolyte/cathode interface. The microstructures increase the surface area of the cell by ~ 2.4% to 4.0% and enhance the connection between the dense YSZ electrolyte and mixed YSZ-lanthanum strontium manganite (LSM) cathode. The morphology and microstructure of the YSZ interface are characterized with scanning electron microscopy. Polarization curves confirm that the power density improves by 47% to 107% at 0.55V, depending on the dimensions of the microstructures, in comparison to a flat interface. The non-linear improvement in power density with the size of microstructures is confirmed by calculating the uncertainty with repeated tests. Based on electrochemical impedance spectroscopy and distribution of relaxation times analysis, the performance improvement is attributed to changes in the oxygen surface exchange kinetics and O2- diffusivity in the cathode.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
eslam M. Abdeltwab, A. Atta, H. Al-Yousef, M. M. Abdelhamied
{"title":"Fabrication, Structural Characterization, Dielectric Analysis and Thermal Properties of Novel Flexible Polymer Composite Films","authors":"eslam M. Abdeltwab, A. Atta, H. Al-Yousef, M. M. Abdelhamied","doi":"10.1149/2162-8777/ad4fc0","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4fc0","url":null,"abstract":"\u0000 The films were characterized by different methods as FTIR, SEM, XRD and TGA to prove the efficient manufacturing of the composite. The dielectric performance measurements were done at frequency of 20 Hz to 6 MHz for the polymer PET and the composite (PPy-Fe2O3)/PET with varying concentrations of Fe2O3. Moreover, to reveal the characteristics of the fabricated composite, the contact angle, the work of adhesion, surface energy of the composite PET/(PPy-Fe2O3) films were considerably determined. The SEM results support the deposition of PPy-Fe2O3 composite on the PET surface. The water contact angle drops from 78.32 o for PET to 40.11o for PET/6%(PPy-Fe2O3), while the dispersive free energy raised from 23.9 mJ/m2 to 43.7 mJ/m2and the polar free energy rises from 8.9 mJ/m2 to 22.3 mJ/m2. The concentration of Fe2O3 increased the surface features of the samples, according to the obtained results. At frequency of 100 Hz, the dielectric constant enhanced from 18 for PET to 923 for the PET/6%(PPy-Fe2O3), and the dielectric loss improved from 24 to 9231, while the energy density improved fromm 7.9x10-5 J/m3 for PET to 408x10-5 J/m3. The TGA results show marginal modifications in thermal stability after deposition the PPy/Fe2O3 on the PET film.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renhao Liu, Yi Xu, Yuling Liu, Baimei Tan, Jinbo Ji, Shihao Zhang, Jiadong Zhao
{"title":"Effect of Potassium Ferrocyanide on CMP Performance of Ruthenium in H2O2-based Slurries","authors":"Renhao Liu, Yi Xu, Yuling Liu, Baimei Tan, Jinbo Ji, Shihao Zhang, Jiadong Zhao","doi":"10.1149/2162-8777/ad4fbe","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4fbe","url":null,"abstract":"\u0000 As feature size of integrated circuits develops to 7 nm, ruthenium is considered the preferred material to replace traditional Ta/TaN barrier layers. Ruthenium can be electroplated without the need for copper seed crystal layers. However, the removal of the ruthenium barrier layer during the polishing process must be addressed. Therefore, this article studies the promoting effect of potassium ferrocyanide (K4Fe(CN)6) and hydrogen peroxide (H2O2) containing silicon slurries on the rate of ruthenium chemical mechanical polishing. Experiments have shown that the polishing rate of ruthenium is significantly improved by the combined action of K4Fe(CN)6 and H2O2. The stronger hydroxyl radicals is the main factor in achieving a high Ru polishing rate, which accelerates the dissolution and removal of Ru layers by converting the hard Ru layer into softer RuO2 and RuO3 oxide layers. The dependencies of the chemical properties (such as electrochemical impedance spectroscopy and surface morphology) proved that the CMP mechanism using Fenton reaction principally performs chemical oxidation and etching dominant CMP simultaneously. This study is expected to provide ideas and insights for the development and design of a new alkaline polishing solution for ruthenium, which is beneficial for the wider application of ruthenium in the field of integrated circuits.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magali Grégoire, Barbara Guitton, Bastien Dury, Fabien Peyrot, Sophie Dreux, Mickael Collonge, Frederic Diette
{"title":"Influence of CoSi Oxidation and Passivation During Silicide Selective Etching on Junction Leakage: Applications to Schottky Diodes Devices","authors":"Magali Grégoire, Barbara Guitton, Bastien Dury, Fabien Peyrot, Sophie Dreux, Mickael Collonge, Frederic Diette","doi":"10.1149/2162-8777/ad4f12","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4f12","url":null,"abstract":"\u0000 For new analogic microelectronic circuits development based on non-linear devices such as Schottky diodes formed in Si active regions, new Co-silicide integrations are required to reduce junction leakages. To gather targeted device requirements, precise Co silicide/Si interface optimization and a limited silicide formation at the active edges is needed. The selective etching during the “Salicide” process plays a real role in the oxidation and/or passivation of the silicide layer. Here, we propose a systematic study including a very large spectrum of experiments around the main parameters of CoSi selective etching. The main conclusions are 1) diode leakages are directly linked to SiO2 layer thickness formed during the SC1 dispense or by air exposure over the CoSi layer, 2) significant effect of dispense flow on SiO2 formation is measured through X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterizations; 3) optimized diode leakages together with contact resistances are then demonstrated for low SC1 delivery flow and long dispense time; and 4) major changes in final CoSi2 layer morphology and silicide/silicon interface are observed by transmission electron microscopy-energy-dispersive X-ray analyses for different selective etching processes, which are potentially explained by enrichment in Co atoms at CoSi/Si during SiO2 overlayer growth.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave Absorption Properties of Hexagonal Ba3(VO4)2 through Zn Doping: A Comprehensive Analysis of Ba3-xZnx(VO4)2","authors":"Praveen Chenna, S. Gandi, Sahil Sharma, Saran Srihari Sripada Panda, Sadi Reddy Parne","doi":"10.1149/2162-8777/ad4f13","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4f13","url":null,"abstract":"\u0000 The current study explores the influence of Zinc (Zn) doping on the crystallography, optical behavior, dielectric properties, and microwave absorption characteristics of hexagonal Barium Vanadate (Ba3(VO4)2). Samples were systematically synthesized with Zn doping concentrations of x=0, 0.05, 0.1, 0.15, and 0.2 mol%, resulting in Ba3-xZnx(VO4)2. Employing various characterization techniques, the alterations in structural, optical, and electrical responses due to incremental Zn incorporation are reported. The UV–VIS DRS absorption spectra reveal a decrease in energy bandgap with increasing concentration of Zn. The lowest optical energy band gap observed was 3.65 eV for x=0.2 mol% Zn. Notably, at a thickness of 6.5 mm, the material achieved a high reflection loss of -82.37 dB at 12.47 GHz for x=0.05 mol% of Zn. Similarly, the same material configuration exhibited a maximum effective absorption bandwidth (EAB) of 5.01 GHz, spanning a frequency range from 12.24 to 17.25 GHz when the thickness was set to 5.5 mm. Furthermore, as the Zn concentration increased from x=0.05 to 0.2 mol%, a decreasing trend in reflection loss was observed, correlating well with the dielectric parameters of samples with different Zn concentrations. The work provides insightful correlations between Zn doping levels and the material’s performance in potential applications ranging from optoelectronics to electromagnetic wave absorption.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Ding, Yaru Li, S. Chakir, Jun Mei, Xianbiao Wang
{"title":"Fluorescein@NH2-UiO-66 Probe for Ratiometric Fluorescence Sensing of Trace Phosphate in Water","authors":"Yu Ding, Yaru Li, S. Chakir, Jun Mei, Xianbiao Wang","doi":"10.1149/2162-8777/ad4ddf","DOIUrl":"https://doi.org/10.1149/2162-8777/ad4ddf","url":null,"abstract":"\u0000 Phosphate pollution leads to deterioration in water quality, posing a serious threat to human health. Therefore, it is important to develop a highly selective and sensitive fluorescent probe for phosphate detection. Here, we report a novel ratiometric fluorescent probe, Fluorescein@NH2-UiO-66 (denoted as Flu@NH2-UiO-66), for the trace detection of phosphate in water. Specifically, during the in-situ solvothermal synthesis of Flu@NH2-UiO-66, fluorescein molecules were encapsulated into the cavities of the metal-organic framework. Furthermore, the encapsulation amount of fluorescein was controlled by adjusting the acidity of the system. The Flu@NH2-UiO-66 (60 H+) sample, prepared with a 60:1 molar ratio of acetic acid to the metal center exhibited distinct dual fluorescence signal peaks. The probe showed a highly selective fluorescence response to phosphate. Within a range of 0-20 μM phosphate concentration, the probe demonstrated excellent linear detection capability with a detection limit of 0.37 μM. Moreover, the mechanism of fluorescence enhancement can be attributed to the addition of phosphate, which greatly increases the UV absorbance of the probe. This study developed a novel ratiometric fluorescent probe capable of rapid, sensitive, and stable detection of trace phosphate, which is of great significance for environmental management.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}