Shuwen Cui, Yulin Wu, Shuangshuang Hui, Qiang Li, Weiwei Liu
{"title":"填充在双层扭曲石墨烯之间的氩纳米团簇:分子动力学模拟","authors":"Shuwen Cui, Yulin Wu, Shuangshuang Hui, Qiang Li, Weiwei Liu","doi":"10.1149/2162-8777/ad2e1a","DOIUrl":null,"url":null,"abstract":"In 2004, graphene was discovered by Novoselov and Geim. With the development of technology,twisted bilayer graphene (tBLG) has become a hot research topic. On the basis of predecessors, we further study the confined spaces between twisted bilayer graphene. The interlayer spacing between them is expected to modify properties of atoms and molecules confined at the atomic interfaces. The effects of twist angle, interlayer spacing of the tBLG and temperature (20 K–70 K) on the equilibrium structure of argon cluster are systematically studied by means of molecular dynamics simulation with the tBLG being considered to be fixed. As the interlayer spacings of tBLGs with different twist angles increase at a fixed temperature 20 K, the equilibrium structures of the argon cluster transform from a monoatomic layer to multilayer structure. For different twist angles at the fixed interlayer spacing, the structures of the argon cluster gradually form periodic pattern (similar to moiré pattern). The effects of temperature and non-equiliblium suddenly heating process on the structures of argon clusters between tBLGs are also studied by molecular dynamics simulation. Our results may provide a theoretical support for the preparation of new carbon-based intercalated composites and the application of graphene.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"54 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Argon Nanocluster Filled Between Twisted Bilayer Graphene: Molecular Dynamics Simulation\",\"authors\":\"Shuwen Cui, Yulin Wu, Shuangshuang Hui, Qiang Li, Weiwei Liu\",\"doi\":\"10.1149/2162-8777/ad2e1a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2004, graphene was discovered by Novoselov and Geim. With the development of technology,twisted bilayer graphene (tBLG) has become a hot research topic. On the basis of predecessors, we further study the confined spaces between twisted bilayer graphene. The interlayer spacing between them is expected to modify properties of atoms and molecules confined at the atomic interfaces. The effects of twist angle, interlayer spacing of the tBLG and temperature (20 K–70 K) on the equilibrium structure of argon cluster are systematically studied by means of molecular dynamics simulation with the tBLG being considered to be fixed. As the interlayer spacings of tBLGs with different twist angles increase at a fixed temperature 20 K, the equilibrium structures of the argon cluster transform from a monoatomic layer to multilayer structure. For different twist angles at the fixed interlayer spacing, the structures of the argon cluster gradually form periodic pattern (similar to moiré pattern). The effects of temperature and non-equiliblium suddenly heating process on the structures of argon clusters between tBLGs are also studied by molecular dynamics simulation. Our results may provide a theoretical support for the preparation of new carbon-based intercalated composites and the application of graphene.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad2e1a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad2e1a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Argon Nanocluster Filled Between Twisted Bilayer Graphene: Molecular Dynamics Simulation
In 2004, graphene was discovered by Novoselov and Geim. With the development of technology,twisted bilayer graphene (tBLG) has become a hot research topic. On the basis of predecessors, we further study the confined spaces between twisted bilayer graphene. The interlayer spacing between them is expected to modify properties of atoms and molecules confined at the atomic interfaces. The effects of twist angle, interlayer spacing of the tBLG and temperature (20 K–70 K) on the equilibrium structure of argon cluster are systematically studied by means of molecular dynamics simulation with the tBLG being considered to be fixed. As the interlayer spacings of tBLGs with different twist angles increase at a fixed temperature 20 K, the equilibrium structures of the argon cluster transform from a monoatomic layer to multilayer structure. For different twist angles at the fixed interlayer spacing, the structures of the argon cluster gradually form periodic pattern (similar to moiré pattern). The effects of temperature and non-equiliblium suddenly heating process on the structures of argon clusters between tBLGs are also studied by molecular dynamics simulation. Our results may provide a theoretical support for the preparation of new carbon-based intercalated composites and the application of graphene.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.