Kaifeng Yu , Ling Liu , Mingshu Chang , Xiaofeng Wang , Min Cheng , Shuang Gao
{"title":"NiCo2O4 loaded on jute fiber porous carbon as an anode material for lithium-ion batteries","authors":"Kaifeng Yu , Ling Liu , Mingshu Chang , Xiaofeng Wang , Min Cheng , Shuang Gao","doi":"10.1016/j.diamond.2024.111651","DOIUrl":"10.1016/j.diamond.2024.111651","url":null,"abstract":"<div><div>With the continuous development of science and technology, there is an increasing demand for batteries, and lithium-ion batteries (LIBs) are favored due to their compact size, strong energy storage capacity, long cycle life, lack of memory effect, and environmental friendliness, etc. The high theoretical specific capacity of NiCo<sub>2</sub>O<sub>4</sub> makes it a promising material for an anode. However, it has many drawbacks, including a slow ion transfer rate and an easy way for volume to expand during charging and discharging. To address these limitations, we have developed a composite material. Jute fiber porous carbon was successfully prepared by high-temperature activation using jute fiber as the carbon matrix and potassium carbonate as the activator, and NiCo<sub>2</sub>O<sub>4</sub> was loaded onto the jute fiber porous carbon and named NiCo<sub>2</sub>O<sub>4</sub>@JFPC. The jute fiber porous carbon serves as a carbon matrix that effectively improves the electrical conductivity of the composites while also slowing down the volume expansion caused by the frequent embedding/de-embedding of lithium ions, and at the same time, providing more effective paths for the transport of lithium ions. The NiCo<sub>2</sub>O<sub>4</sub>@JFPC composites were synthesized by solvothermal method. The effects of varying calcination temperatures (250, 350, and 450 °C) on the properties of the composites were investigated. The discharge capacity of NiCo<sub>2</sub>O<sub>4</sub>@JFPC-350 reached 1217.9 mAh g<sup>−1</sup> after 100 cycles at 0.2C at a calcination temperature of 350 °C.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111651"},"PeriodicalIF":4.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A multifunctional smart fabric based on reduced graphene oxide for next generation military couture","authors":"Srimathi Krishnaswamy , Vishnu Damodaran Nambissan , Akilandaeswari Jeyaraj , Kanishka Gopalakrishnan Raguraman , Ragul Rajesh Vel murugan , Sathyanarayana N. Gummadi","doi":"10.1016/j.diamond.2024.111669","DOIUrl":"10.1016/j.diamond.2024.111669","url":null,"abstract":"<div><div>Multifunctional smart apparel with comfortable, hydrophobic, flexible, and washable nature is needed for next-generation fabrics in the military sector. Hence, we synthesized reduced graphene oxide (RGO) by cost- effective route and embedded on cotton cloth with polyvinyl alcohol as binder. X-ray diffraction pattern (XRD) and Raman spectra confirmed formation of RGO. RGO exhibited a broad response covering UV, Visible, and near-infrared regions of the solar spectrum. The photocatalytic efficiency of 50 mg RGO for 10 ppm methylene blue is 73 % at visible light in 2 h 15 min. Different ratios of polyvinyl alcohol (PVA) and RGO (1:1, 1:2. 1:4 and 1:6) were taken and coated on cotton cloth. The higher concentration of RGO(3RPC) on cloth exhibited a bandgap of 1.67 eV and contact angle of 134.45°. Lower water absorption ability (28 %) and water solubility ability (7.9 %) of 3RPC indicate it is concurrent with contact angle. 3RPC is lightweight, flexible, and hydrophobic and it exhibits broad absorption with low bandgap. Due to the water repellence nature and broad absorption, 3RPC can used as self-cleaning apparel for military society.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111669"},"PeriodicalIF":4.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One step synthesis of carboxymethyl cellulose/graphene oxide composites for removal of copper ion from aqueous solution","authors":"Jinjin Cui , Hui Chen , Ying Chen , Xiaojuan Zhou","doi":"10.1016/j.diamond.2024.111670","DOIUrl":"10.1016/j.diamond.2024.111670","url":null,"abstract":"<div><div>Excessive heavy metal ions in the environment often have an impact on plant growth and human health. In this study, carboxymethyl cellulose/graphene oxide composites (CMC/GO) were prepared by a simple solution blending evaporation method to remove copper ions. The structure of CMC/GO was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscope, Brunauer–Emmett–Teller, and X-rayphotoelectron spectroscopy. The results showed that the maximum adsorption capacity of the adsorbent CMC/GO reached 26.05 mg/g, when the pH of the solution was 5, the initial concentration of copper ions was 80 mg/L, and the dosage of the adsorbent was 0.4 g. The adsorption of copper ions onto CMC/GO is validated by the pseudo-second-order kinetics model (<em>R</em> = 0.99949), and the adsorption isotherm data was fitted well with the Langmuir isotherm (<em>R</em> = 0.99989). Thermodynamic data showed that the adsorption process of copper ions by composite CMC/GO is a spontaneous endothermic reaction (ΔG < 0, ΔH > 0). Moreover, the adsorbent showed better recyclability and the adsorption efficiency can still reach 85.0 % after 5 adsorption-desorption cycles.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111670"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Material removal mechanism of TiCp/Fe composite by multi-diamond-abrasive-grinding considering the random distribution characteristics of particles","authors":"Qingzhe Meng , Zhenzhong Zhang , Laixiao Lu , Hongyu Xing , Xiaoliang Liang","doi":"10.1016/j.diamond.2024.111675","DOIUrl":"10.1016/j.diamond.2024.111675","url":null,"abstract":"<div><div>The TiC ceramics reinforced Fe matrix composite (TiCp/Fe) exhibits exceptional properties, including high hardness, strength, wear, and heat resistance. This study focuses on investigating the material removal mechanism to achieve high-quality and low-damage surfaces. A three-dimensional particle random distribution algorithm is proposed based on the random distribution characteristics of TiC particles. Furthermore, a multi-diamond-abrasive grinding finite element model is established using the Rayleigh probability distribution model to account for the randomness of undeformed chip thickness during the grinding process. This study combines experimental and simulation analyses to investigate the variations in grinding forces, stress field distributions, and surface and subsurface quality. The results reveal that the material removal process can be categorized into five stages: ploughing of the Fe matrix and TiC particle, TiC particle crack initiation, TiC particle crack extension, and TiC particle fracture. Moreover, the process of removing TiC particles can be further grouped into ductile removal, ductile-brittle removal, and brittle removal, depending on the undeformed chip thickness. This study improves the comprehension of the mechanism of TiCp/Fe composite material and establishes a significant practical guidance for the diamond grinding processing of metal matrix composites.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111675"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azhar Ali Haidry , Muhammad Fanan Khan , Adil Raza , Talha Amin , Muhammad Kashif , Kareem Yusuf
{"title":"Facile synthesis of silver and copper modified graphitic carbon nitride for volatile organic compounds sensing","authors":"Azhar Ali Haidry , Muhammad Fanan Khan , Adil Raza , Talha Amin , Muhammad Kashif , Kareem Yusuf","doi":"10.1016/j.diamond.2024.111671","DOIUrl":"10.1016/j.diamond.2024.111671","url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) pose significant health risks when inhaled or ingested in large quantities. Metal oxide-based solid-state gas sensors are commonly utilized for VOCs detection, including methanol, however their high operating temperature and selectivity are both biggest challenges. In this context, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has emerged as a promising alternative for VOCs sensing due to its superior sensing properties. In this work, Cu and Ag doped g-C<sub>3</sub>N<sub>4</sub> was synthesized via the polycondensation method for VOCs sensing applications. All the samples showed a selective response to methanol at room temperature. Notably, the Ag/g-C<sub>3</sub>N<sub>4</sub> sensor exhibited a significantly enhanced response (~27.5) compared to both undoped g-C<sub>3</sub>N<sub>4</sub> (~3.58) and Cu/g-C<sub>3</sub>N<sub>4</sub> (~9.82) sensors towards 200 ppm methanol. The Ag/C<sub>3</sub>N<sub>4</sub> based sensor showed rapid response (21 s) and recovery (17 s) times, along with excellent short-term and long-term stability. It was found that Ag/C<sub>3</sub>N<sub>4</sub> sensor exhibited a good response to humidity levels ranging from 9 % to 93 % RH, without any significant variation observed when deposited on the ceramic and flexible polyimide substrates. Further, considering its practical applicability, the Ag/C<sub>3</sub>N<sub>4</sub> sensor showed successful detection of alcohol in human breath, highlighting its potential for real-world applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111671"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co–Ni nanoparticle supported on heteroatom-doped carbon derived from garlic powder and eutectic solvent: Its application in Nitroarenes reduction","authors":"Kosar Azizi, Firouzeh Nemati, Marzie Sadat Mirhosseyni","doi":"10.1016/j.diamond.2024.111662","DOIUrl":"10.1016/j.diamond.2024.111662","url":null,"abstract":"<div><div>This paper presents the synthesis of a novel heterogeneous catalyst, PSN-C600-Co2:Ni1, designed for the hydrogenation of nitroaromatic compounds. The catalyst is a porous carbon substrate triply doped with nitrogen, sulfur, and phosphorus, incorporating bimetallic Co and Ni nanoparticles. A natural precursor, garlic biochar, and a biodegradable eutectic solvent were used in the synthesis. Various characterization techniques, including Scanning Electron Microscope (SEM), X-Ray Energy Diffraction Spectroscopy (EDX), Elemental Mapping Measurements (MAP), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD), Infrared Spectrometer (FTIR), Transmission Electron Microscope (TEM), Raman Spectroscopy, and Nitrogen Adsorption and Desorption Pattern (N<sub>2</sub> adsorption-desorption isotherm), were utilized to examine the features and properties of the synthesized PSN-C600-Co2:Ni1 catalyst.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111662"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan He , Jianhong Yi , Liang Liu , Rui Bao , Mingyi Zhu , Caiju Li , Xin Kong , Yichun Liu , Xiaofeng Chen , Zunyan Xu , Ke Chu
{"title":"Insights on the electrical conductivity enhancement mechanisms of carbon polymer dots (CPDs) reinforced Cu composites","authors":"Yan He , Jianhong Yi , Liang Liu , Rui Bao , Mingyi Zhu , Caiju Li , Xin Kong , Yichun Liu , Xiaofeng Chen , Zunyan Xu , Ke Chu","doi":"10.1016/j.diamond.2024.111674","DOIUrl":"10.1016/j.diamond.2024.111674","url":null,"abstract":"<div><div>Carbon polymer dots (CPDs) has represented unique potential in reconciling the incompatible properties of strength and electrical conductivity (EC) in copper matrix composites, while the mechanisms underlying EC improvement remain to be fully elucidated. 0.2CPDs/Cu composites prepared by conventional powder metallurgy processes achieves excellent mechanical and electrical conductivity simultaneously. Compared to pure Cu, CPDs not only participated in the construction of a better electronic transport pathway, but accelerated the twinning forming behavior, leading to outstanding strength(∼423 MPa) and electrical conductivity(95%IACS). Here the conductive behavior of CPDs/Cu composites was revealed through characterizing the intrinsic electrical properties of CPDs and composites microstructure evolution. CPDs not only participated in the construction of a better electronic transport pathway, but accelerated the twinning forming behavior. Increased twinning domain leads to the remarkable amelioration of grain boundary resistance, meanwhile, the intragranular CPDs made a significant contribution on the enhanced mechanical strength via Orowan strengthening. This work makes up the lack of understanding on the mechanical and electrical enhancement mechanism in our prior research.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111674"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingjun Deng , Xueyu Zhang , Ke Fang , Zhigang Gai , Yang Zhou , You Yang
{"title":"Correlation of residual stress on piezoresistive properties of boron-doped diamond films","authors":"Mingjun Deng , Xueyu Zhang , Ke Fang , Zhigang Gai , Yang Zhou , You Yang","doi":"10.1016/j.diamond.2024.111677","DOIUrl":"10.1016/j.diamond.2024.111677","url":null,"abstract":"<div><div>To investigate the influence of residual stress on the piezoresistive behavior of boron-doped diamond (BDD) films, BDD films with varying doping concentrations were synthesized using a hot-filament chemical vapor deposition (HFCVD) system on silicon and diamond substrates. The relationship between the surface morphology, structural composition, resistivity, and piezoresistive properties of BDD electrodes was examined, along with an in-depth analysis of the impact of boron doping level on these properties. The microstructure and bonding state of the BDD films were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The piezoresistive properties of the BDD films were evaluated employing a cantilever beam bending method. Our findings demonstrate that the level of boron doping not only affects resistivity but also directly influences residual stress in BDD films, both factors having an impact on their piezoresistive properties. Despite significantly larger grain sizes observed in BDD films grown on diamond substrates compared to those grown on silicon substrates at identical boron doping concentrations, they exhibit consistent variations in residual stress and gauge factor (GF) values. With increasing doping levels, the absolute residual stress decreases initially before increasing again; moreover, at 2000 ppm doping level, it transitions from compressive to tensile stress. The GF value is closely associated with both the magnitude and type of residual stress. By utilizing a doping concentration of 2000 ppm for growth on diamond substrates, we achieved a peak GF value of 257 for BDD films which highlights their promising potential for pressure sensor applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111677"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Ding , Litao Chen , Na Li , Qihua Zhou , Xianwen Zhang
{"title":"Biomass-based three-dimensional network porous carbon anodes derived from discontinuous activation for high performance Li-ion batteries","authors":"Rui Ding , Litao Chen , Na Li , Qihua Zhou , Xianwen Zhang","doi":"10.1016/j.diamond.2024.111676","DOIUrl":"10.1016/j.diamond.2024.111676","url":null,"abstract":"<div><div>An approach of discontinuous activation and frozon-dry pretreatment toward a three-dimensional network porous carbon was proposed by using apple as the carbon source. The porous carbon, characterized by its high surface area and abundant porosity, was optimized through the manipulation of temperature and activator quantities during the activation process. The sample obtained by first calcining at 500 °C and then at 800 °C shows ultra-high rate electrochemical performance of over 900 mA h g<sup>−1</sup> after 100 cycles and over 500 mA h g<sup>−1</sup> after 500 cycles under the condition of charging and discharging current density of 0.2 A g<sup>−1</sup> due to the high porosity. It is ascribed to the unique porous structure that can make the electrolyte and lithium ion transport and path short on the surface and inside the electrode material, further enhance its fast transport ability. The described approach represents an innovative and potentially impactful method for producing porous carbon electrodes with excellent electrochemical performance, particularly in the context of high-rate capability lithium-ion batteries.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111676"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shamas Riaz , Muhammad Ahmad , Syed Salman Shafqat , Munawar Iqbal , Gul Tasam , Maryam Kaleem , Syed Rizwan Shafqat , Habib Elhouichet , Mongi Amami , Abid Ali
{"title":"Facile synthesis of transition metal-selenides@CNTs for electrochemical oxygen evolution reactions","authors":"Shamas Riaz , Muhammad Ahmad , Syed Salman Shafqat , Munawar Iqbal , Gul Tasam , Maryam Kaleem , Syed Rizwan Shafqat , Habib Elhouichet , Mongi Amami , Abid Ali","doi":"10.1016/j.diamond.2024.111655","DOIUrl":"10.1016/j.diamond.2024.111655","url":null,"abstract":"<div><div>The fabrication of carbon-based efficient electrocatalysts for hydrogen production during electrochemical water splitting could be a great achievement to fulfill the future renewable energy demand. In this study, one-step hydrothermal process was used to develop composites of multi-metal selenides with carbon nanotubes (MnSe@CNTs, MnCuSe@CNTs, MnCoNiSe@CNTs) as electrocatalysts for OER during electrolytic water splitting. XRD and SEM with EDS analysis confirm the successful fabrication of the proposed catalyst and its crystalline morphology. Among the synthesized functionalized CNTs composites, bimetallic selenide composite gives a better electrocatalytic activity with reduced overpotential, lower Tafel slope and reduced charge transfer resistance in 1 M KOH. By using the catalyst(MnCuSe@CNTs) water oxidation starts at 1.4 V onset potential with a very low overpotential of 245 mV and the Tafel slope was only 107 mV dec<sup>−1</sup>. Metal-based selenides composites with CNTs introduce a lot of active sites, and subsequently nanoparticles of MnSe, MnCuSe, & MnCoNiSe, causes to boost the surface area and electrocatalysis toward oxygen evolution reactions.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111655"},"PeriodicalIF":4.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}