Sulfidation-induced ZIF-67 melting and remodeling to enhance its interfacial bonding with hollow carbon microtubes for improving capacitive performance

IF 5.1 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Weijun Ma , Xuxin Qiu , Weihong Guo , Xin Lu , Jiarui Zhu , Zhuoqi Wang , Yi Zhang , Qiuju Zheng , Dan Liu , Changlong Sun , Dongdong Zhang
{"title":"Sulfidation-induced ZIF-67 melting and remodeling to enhance its interfacial bonding with hollow carbon microtubes for improving capacitive performance","authors":"Weijun Ma ,&nbsp;Xuxin Qiu ,&nbsp;Weihong Guo ,&nbsp;Xin Lu ,&nbsp;Jiarui Zhu ,&nbsp;Zhuoqi Wang ,&nbsp;Yi Zhang ,&nbsp;Qiuju Zheng ,&nbsp;Dan Liu ,&nbsp;Changlong Sun ,&nbsp;Dongdong Zhang","doi":"10.1016/j.diamond.2025.112841","DOIUrl":null,"url":null,"abstract":"<div><div>A robust interfacial bonding between CoS<sub>2</sub> and porous carbon with hierarchical ion fast channels is crucial for fabricating capacitive materials with high stability and rate performance. Herein, a method for high-temperature sulfidation-induced ZIF-67 melting and remodeling at the surface of cotton-derived hollow tubular carbon fiber is employed to achieve the interfacial welding of porous carbon/CoS<sub>2</sub> with carbon fiber, thereby constructing a vascular-like scar-shaped CoS<sub>2</sub>-C<sub>C</sub>-C<sub>KF</sub>. Through the in-situ reconfiguration of ZIF-67-derived carbon framework mediated by Co<sup>2+</sup>/2-MIM molar ratio, CoS<sub>2</sub>-C<sub>C</sub>-C<sub>KF</sub> achieves the multiscale collaboration among the conductive network (cotton fiber-derived carbon, C<sub>KF</sub>), the interface bridging layer (ZIF-67-derived carbon, C<sub>C</sub>), and the active pseudocapacitive CoS<sub>2</sub> nanoparticles, forming an integrated ionic-electronic conductor hierarchical architecture. CoS<sub>2</sub>-C<sub>C</sub>-C<sub>KF</sub> exhibits a low electron transfer impedance of 0.15 and a high ionic diffusion coefficient of 4.7 × 10<sup>−5</sup> cm<sup>2</sup> s<sup>−1</sup> after calculation. CoS<sub>2</sub>-C<sub>C</sub>-C<sub>KF</sub> exhibits a specific capacitance of 997.4 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup>, and it still maintains 81 % of its specific capacitance at 10 A g<sup>−1</sup>, which is higher than that of CoS<sub>2</sub>-C<sub>A</sub>-C<sub>KF</sub> (375.0 F g<sup>−1</sup>, 69 %) and CoS<sub>2</sub>-C<sub>B</sub>-C<sub>KF</sub> (638.0 F g<sup>−1</sup>, 75 %). The assembled asymmetric supercapacitor achieves a high energy density of 47.4 Wh kg<sup>−1</sup> at 375.0 W kg<sup>−1</sup> and exhibits excellent cycle stability (maintaining 81 % capacity after 10,000 cycles). These results demonstrate that the melting reconstruction strategy of ZIF-67 on carbon substrate can enhance the interfacial bonding strength of porous carbon/ CoS<sub>2</sub>, thereby improving their cycling stability in supercapacitors.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"159 ","pages":"Article 112841"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525008982","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

A robust interfacial bonding between CoS2 and porous carbon with hierarchical ion fast channels is crucial for fabricating capacitive materials with high stability and rate performance. Herein, a method for high-temperature sulfidation-induced ZIF-67 melting and remodeling at the surface of cotton-derived hollow tubular carbon fiber is employed to achieve the interfacial welding of porous carbon/CoS2 with carbon fiber, thereby constructing a vascular-like scar-shaped CoS2-CC-CKF. Through the in-situ reconfiguration of ZIF-67-derived carbon framework mediated by Co2+/2-MIM molar ratio, CoS2-CC-CKF achieves the multiscale collaboration among the conductive network (cotton fiber-derived carbon, CKF), the interface bridging layer (ZIF-67-derived carbon, CC), and the active pseudocapacitive CoS2 nanoparticles, forming an integrated ionic-electronic conductor hierarchical architecture. CoS2-CC-CKF exhibits a low electron transfer impedance of 0.15 and a high ionic diffusion coefficient of 4.7 × 10−5 cm2 s−1 after calculation. CoS2-CC-CKF exhibits a specific capacitance of 997.4 F g−1 at a current density of 1 A g−1, and it still maintains 81 % of its specific capacitance at 10 A g−1, which is higher than that of CoS2-CA-CKF (375.0 F g−1, 69 %) and CoS2-CB-CKF (638.0 F g−1, 75 %). The assembled asymmetric supercapacitor achieves a high energy density of 47.4 Wh kg−1 at 375.0 W kg−1 and exhibits excellent cycle stability (maintaining 81 % capacity after 10,000 cycles). These results demonstrate that the melting reconstruction strategy of ZIF-67 on carbon substrate can enhance the interfacial bonding strength of porous carbon/ CoS2, thereby improving their cycling stability in supercapacitors.

Abstract Image

硫化诱导ZIF-67熔化重塑,增强其与空心碳微管的界面结合,从而提高其电容性能
具有分层离子快速通道的CoS2和多孔碳之间的强大界面键合对于制造具有高稳定性和速率性能的电容材料至关重要。本文采用高温硫化诱导ZIF-67在棉源空心管碳纤维表面熔化重塑的方法,实现多孔碳/CoS2与碳纤维的界面焊接,从而构建血管状疤痕状的CoS2- cc - ckf。通过Co2+/2-MIM摩尔比介导的zif -67衍生碳框架的原位重构,CoS2-CC-CKF实现了导电网络(棉纤维衍生碳,CKF)、界面桥接层(zif -67衍生碳,CC)和活性假电容性CoS2纳米颗粒之间的多尺度协同作用,形成了集成的离子电子导体层次化结构。经计算,CoS2-CC-CKF具有较低的电子转移阻抗0.15和较高的离子扩散系数4.7 × 10−5 cm2 s−1。CoS2-CC-CKF在1 a g−1电流密度下的比电容为997.4 F g−1,在10 a g−1电流密度下仍能保持81%的比电容,高于CoS2-CA-CKF (375.0 F g−1,69%)和CoS2-CB-CKF (638.0 F g−1,75%)。组装的非对称超级电容器在375.0 W kg - 1时达到47.4 Wh kg - 1的高能量密度,并表现出优异的循环稳定性(在10,000次循环后保持81%的容量)。上述结果表明,采用ZIF-67在碳基体上的熔融重建策略可以提高多孔碳/ CoS2的界面结合强度,从而提高其在超级电容器中的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信