{"title":"Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required","authors":"","doi":"10.1016/S0925-9635(24)01037-9","DOIUrl":"10.1016/S0925-9635(24)01037-9","url":null,"abstract":"","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111824"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rohit B. Sutar , Gopal K. Kulkarni , Rohit R. Koli , Suprimkumar D. Dhas , Ninad B. Velhal , Keshav Y. Rajpure , Vijaya R. Puri , Jyotiprakash B. Yadav
{"title":"Bio-derived graphitic carbon microspheres: A green approach for high-frequency microwave absorption","authors":"Rohit B. Sutar , Gopal K. Kulkarni , Rohit R. Koli , Suprimkumar D. Dhas , Ninad B. Velhal , Keshav Y. Rajpure , Vijaya R. Puri , Jyotiprakash B. Yadav","doi":"10.1016/j.diamond.2024.111836","DOIUrl":"10.1016/j.diamond.2024.111836","url":null,"abstract":"<div><div>Bio-derived carbon materials have emerged as a sustainable alternative to non-renewable petroleum-based carbon sources, thanks to their reproducibility and environmental benefits. There is a strong demand for developing and efficiently utilizing carbon-based microwave absorbing materials (MAMs) that are lightweight, require low filler loading, and offer broadband absorption for electromagnetic wave (EM) applications. In this context, we successfully synthesized uniform carbon microspheres from the natural precursor turpentine oil using the chemical vapor deposition (CVD) technique at various temperatures. The sample prepared at 1000 °C (GC-1000) exhibited a uniform carbon microsphere morphology, as confirmed by XRD and Raman spectroscopy, and demonstrated extremely good microwave absorption properties. With a low filler loading of just 5 wt%, the GC-1000 sample achieved a minimum reflection loss (RL) of −39.77 dB at 10.21 GHz and an effective absorption bandwidth of 2.51 GHz at a matching thickness of only 2.8 mm. Additionally, this sample showed a total shielding effectiveness (SE<sub>T</sub>) of −44.74 dB, surpassing the threshold required for commercial applications. The graphitic phase formation, confirmed by XRD and Raman analysis, acts as a conductive trap for electromagnetic radiation, and the high surface area of the uniform carbon microspheres facilitates multiple internal reflections, enhancing overall microwave absorption performance in the X-band region. Our lightweight, durable, bioderived carbon microspheres, synthesized through a cost-effective and scalable process, show significant potential for EM wave absorption in military and electromagnetic compatibility (EMC) devices.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111836"},"PeriodicalIF":4.3,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile synthesis of reduced graphene oxide nanosheet modified NiMn-LDH nanoflake arrays as a novel electrode for asymmetric supercapacitor","authors":"P. Priyadharshini, G. Mahalakshmi","doi":"10.1016/j.diamond.2024.111833","DOIUrl":"10.1016/j.diamond.2024.111833","url":null,"abstract":"<div><div>Composite electrodes that possess both appropriate integration and reasonable structures are needed to provide eminent electrochemical performance in energy storage devices. At this work, an innovative electrode material with a composite structure of NiMn-LDH nanosheets fixed on the reduced graphene oxide/Ni Foam (rGO/NF) was fabricated by a convenient two-step hydrothermal process. Designing the heterostructure with the hydrothermal reaction to grow LDH layers has engineered NiMn LDH/rGO, a highly active towards the electrochemical performance. The formation of hybrid structure is characterized using X-ray diffraction, and scanning electron microscopy, which confirmed as well as showed the uniform growth of NiMn-LDH nanoflakes on rGO sheets. The intriguing compositional/componential advantages significantly facilitate the efficient penetration of the electrolytes and increase active sites of redox reactions in energy storage application. The NiMn LDH/rGO composite exhibited the highest specific capacitty of 1090 Cg<sup>−1</sup> at 1 Ag<sup>−1</sup> with an excellent cyclic stability of 92.2 % over 10,000 charging and discharging cycles at 20 Ag<sup>−1</sup>. An asymmetric supercapacitor (ASC) with NiMn LDH/rGO//activated carbon (AC) demonstrates a remarkable capacity of 330.5 Cg<sup>−1</sup> at 1 Ag<sup>−1</sup> with excellent cycling stability. Moreover, the device achieving a high energy density of 45.8 Whkg<sup>−1</sup> at 623 Wkg<sup>−1</sup> and favourable cycle life, where 98.3 % of the capacitance was retained after 10,000 cycles. The coupling and synergistic effects of NiMn LDH and rGO provide a convenient channel for the electrochemical process, which is beneficial to spread widely within the realm of electrochemical energy storage.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111833"},"PeriodicalIF":4.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junmei Liu, Yu Zhang, Xirui Miao, Haichao Li, Chunying Tao, Jin Liu, Xudong Yang
{"title":"Rapid synthesis of nitrogen-doped carbon dots by microwave method for sensitive detection of co(II) in water environment","authors":"Junmei Liu, Yu Zhang, Xirui Miao, Haichao Li, Chunying Tao, Jin Liu, Xudong Yang","doi":"10.1016/j.diamond.2024.111830","DOIUrl":"10.1016/j.diamond.2024.111830","url":null,"abstract":"<div><div>Novel nitrogen-doped carbon dots (N-CDs) were prepared by microwave method using <em>o</em>-phenylenediamine and formamide as raw materials, and the N-CDs were used successfully for sensing Co(II) on the basis of photoluminescence quenching. The structural characterization of the obtained N-CDs was thoroughly performed by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) spectroscopy. The optical properties were also determined by absorption and fluorescence spectra. N-CDs have bright yellow fluorescence emission and high quantum yield (29 %), with a detection limit as low as 0.38 μM. In order to detect Co(II) more conveniently and quickly, N-CDs/PVA fluorescence composite film was prepared by compounding N-CDs with polyvinyl alcohol. The fluorescence composite film combines the fluorescence characteristics of N-CDs and the stability of polyvinyl alcohol. The application range of Co(II) visual detector in the water environment is expanded.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111830"},"PeriodicalIF":4.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feifan Hou , Guoliang Zhang , Shichao Lu , Jian Qi , Yang Li
{"title":"Design of Intercalated Graphene/CNTs nanocomposite lubricants with load-bearing and their intelligent electric current-controlled friction performance","authors":"Feifan Hou , Guoliang Zhang , Shichao Lu , Jian Qi , Yang Li","doi":"10.1016/j.diamond.2024.111832","DOIUrl":"10.1016/j.diamond.2024.111832","url":null,"abstract":"<div><div>The poor dispersion stability and load-carrying properties of Gra may limit its further application in lubrication. The Gra/CNTs nanocomposite additive (abbreviated as GC) was successfully prepared in this paper. The micromorphology of Gra/CNTs was indicated that some carbon nanotubes were inserted into the interlayer of Gra layers. The different content of GC additive was added to hexadecane (C16). By comparison with that of pure C16, the average coefficient of friction (COF) of 0.3 wt% GC-C16 was reduced by 45 %, and its wear volume was also reduced by 43.75 %, which were attributed to the excellent interfacial load-bearing capacity of CNTs. The electric current-controlled COF of 1.0 wt% GC-C16 was decreased by 18 % compared to that of test without electric current. The electric current could break down the additive into finer structures, effectively bearing the load and repairing the worn surface. Therefore, GC nanocomposite additive acted as a remarkable role in the application of anti-friction area.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111832"},"PeriodicalIF":4.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the performance and mechanism of photocatalytic hydrogen production by NiO/ZnO-graphene composite materials under low irradiation conditions","authors":"Sun Meng, Zhang Haifeng, Zhou Yunlong","doi":"10.1016/j.diamond.2024.111823","DOIUrl":"10.1016/j.diamond.2024.111823","url":null,"abstract":"<div><div>Using different mass ratios of NiO, ZnO, and corn stover-based graphene (GR), NiO/ZnO-graphene (NZGR) composite photocatalytic materials, which demonstrated photocatalytic water splitting for hydrogen production under low irradiation, were prepared by an in-situ deposition method. The microstructure and optoelectronic properties of the NZGR materials were characterized. The heterostructure formed by NiO and ZnO in the photocatalytic NZGR material was coupled with the graphene-like structure of GR, resulting in the rapid transfer of electrons to the graphene surface, causing electron accumulation and ensuring the ability of the material to produce hydrogen by the photocatalytic decomposition of water under low irradiation. Under the optimal mixing ratio of the components of the NZGR photocatalyst with a graphene mass fraction of 30 %, hydrogen production exhibited the highest rate and was 350 times faster than the photocatalytic hydrogen production of NiO/ZnO under the same conditions. This study provides a new approach to producing hydrogen by the photocatalytic decomposition of water under low irradiation conditions.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111823"},"PeriodicalIF":4.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changkangle Xu , Jiankang Ye , Die gong , Xuedan Chen , Xin Zhao , Qingshan Fu
{"title":"Supercapacitor performance evaluation with changes of microstructure in carbon electrode from perylene diimide derivative","authors":"Changkangle Xu , Jiankang Ye , Die gong , Xuedan Chen , Xin Zhao , Qingshan Fu","doi":"10.1016/j.diamond.2024.111816","DOIUrl":"10.1016/j.diamond.2024.111816","url":null,"abstract":"<div><div>Structural regulation of carbon electrode materials is an effective route to reinforce the performance of supercapacitors. Due to its high carbon content and easy gelation, perylene diimide derivative (PDI-d) is a good precursor for preparation of microstructure-controlled carbons. Here, PDI-d is synthesized and its gels are prepared under the action of glucono delta lactone (GDL). The PDI-d gels are subjected to freezing in liquid nitrogen or refrigerator, freeze-drying, carbonization for harvest of derived carbons with different structures and element doping. The derived carbons through liquid nitrogen freezing present fiber-woven three-dimensional connected porous structures, while those subjected to freezing in refrigerators are lamellar structures. N and Sn can be doped in the carbons using triethylamine (TEA) and K<sub>2</sub>SnO<sub>3</sub>·3H<sub>2</sub>O as solvents for PDI-d dissolution, respectively. The carbons with connected pores show higher specific surface area (454 m<sup>2</sup> g<sup>−1</sup>), and better electrochemical performance than the carbons with lamellar structures. The optimum specific capacitance (200.1 F g<sup>−1</sup>) can be acquired in 3D porous carbons. The incorporation of N and Sn can further optimize the electrochemical performance. Specially, the Sn-doped porous structure derived carbon achieves a large energy density (27.79 Wh kg<sup>−1</sup>) and keeps good cycle stability (94.7 % after 10,000 cycles).</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111816"},"PeriodicalIF":4.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting Sun , Yuqing He , Jian Liu , Ping Gao , Zhiren Wu , Jun Liu , Xinshan Rong
{"title":"Construction of dual Z-scheme heterostructure TCN/In2O3/ZnO composite with oxygen vacancies for enhanced artificial nitrogen fixation","authors":"Ting Sun , Yuqing He , Jian Liu , Ping Gao , Zhiren Wu , Jun Liu , Xinshan Rong","doi":"10.1016/j.diamond.2024.111814","DOIUrl":"10.1016/j.diamond.2024.111814","url":null,"abstract":"<div><div>The synergistic effect between vacancy engineering and heterostructures can effectively improve the interfacial charge transfer ability and efficiency of catalytic nitrogen reduction. Herein, a ternary dual <em>Z</em>-scheme tubular carbon nitride composited oxygen vacancy-induced indium oxide and oxygen vacancy-induced zinc oxide catalyst (TCN/Vo-In<sub>2</sub>O<sub>3</sub>/Vo-ZnO) was constructed, and the synergistic mechanism of charge transport at the catalyst interface was explored. The excellent efficiency of nitrogen fixation could reach 171.56 μmol/L within 120 min, and the high stability of TCN/Vo-In<sub>2</sub>O<sub>3</sub>/Vo-ZnO was favorable for practical applications. All experiments indicated that the dual-Z scheme heterostructure and oxygen vacancies have a synergistic effect. Oxygen vacancies could control the valence band position. This control improved the transfer rate of photogenerated charge carriers between heterojunctions, thereby enhancing the adsorption and activation of N<sub>2</sub>. This study may offer new insights into the synthesis of highly efficient catalysts for photocatalytic nitrogen fixation.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111814"},"PeriodicalIF":4.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Tao Yang, Wen-Dan Wang, Min-Xuan Tang, Wei-Hong Liu, Qi-Jun Liu
{"title":"First-principles calculations of tellurium-related doping in diamond","authors":"Yu-Tao Yang, Wen-Dan Wang, Min-Xuan Tang, Wei-Hong Liu, Qi-Jun Liu","doi":"10.1016/j.diamond.2024.111831","DOIUrl":"10.1016/j.diamond.2024.111831","url":null,"abstract":"<div><div>The impacts of tellurium (Te) doping and selenium‑tellurium (Se<img>Te) co-doping on the electronic structure of diamond are investigated by applying density functional theory (DFT). The formation energies, band structures, densities of states (DOS), electronic properties and electron effective masses of the introduced defects are analyzed. Furthermore, the study investigates the impact of the number of carbon vacancies associated with Te atoms on diamond doping. The results show that a carbon vacancy greatly reduces the difficulty of doping Te in diamond. In Se<img>Te co-doped diamond, charge difference density analysis and Bader's method confirm that the Se<img>Te structures display n-type semiconducting behavior, with Se and Te atoms serving as acceptors in the diamond. Moreover, the calculated effective mass of electron in the SeTeV structure is notably lower than that of pure diamond. This discrepancy indicates that SeTeV doping could substantially augment the electron mobility in diamond.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111831"},"PeriodicalIF":4.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjing Liu , Zihang Qiao , Bin Wang , Zheyu Li , Minghui Zhang
{"title":"A dual-strategy for the valorization and regeneration of spent activated carbon","authors":"Wenjing Liu , Zihang Qiao , Bin Wang , Zheyu Li , Minghui Zhang","doi":"10.1016/j.diamond.2024.111800","DOIUrl":"10.1016/j.diamond.2024.111800","url":null,"abstract":"<div><div>To accomplish the objective of reusing spent activated carbon (AC), this study achieved the in-situ regeneration of spent AC through a chemical oxidation process that produced carbon quantum dots (CQDs). The primary focus was to investigate the physical and chemical structural transformations occurring during the conversion of AC into CQDs, elucidating the in-situ regeneration mechanism of the spent AC. The ultimate aim was to develop a durable, efficient, and cost-effective activated carbon adsorbent. The findings indicate that the in-situ regenerated AC recovered 68 % of its original adsorption capacity during CQDs (with a quantum yield of 8 %) preparation process. Notably, the regenerated AC displayed a distinctive hierarchical petal-like structure and an increase in surface oxygenated functional groups, which shifted its adsorption mechanism from predominantly physical to chemical adsorption. Furthermore, the incorporation of the TiO<sub>2</sub> modifier reduced the band gap of the AC/CQDs to 2.13 eV, thus broadening the composite system's response spectrum under visible light and decreasing the recombination of photogenerated electron-hole pairs. Consequently, the in-situ regeneration of spent AC was enhanced and superior to that reported in existing literature.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111800"},"PeriodicalIF":4.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}