Current opinion in virology最新文献

筛选
英文 中文
The role of influenza-A virus and coronavirus viral glycoprotein cleavage in host adaptation 流感a- a病毒和冠状病毒糖蛋白裂解在宿主适应中的作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2023-02-01 DOI: 10.1016/j.coviro.2023.101303
Miriam R Heindl, Eva Böttcher-Friebertshäuser
{"title":"The role of influenza-A virus and coronavirus viral glycoprotein cleavage in host adaptation","authors":"Miriam R Heindl,&nbsp;Eva Böttcher-Friebertshäuser","doi":"10.1016/j.coviro.2023.101303","DOIUrl":"10.1016/j.coviro.2023.101303","url":null,"abstract":"<div><p>While receptor binding is well recognized as a factor in influenza-A virus (IAV) and coronavirus (CoV) host adaptation, the role of viral glycoprotein cleavage has not been studied in detail so far. Interestingly, recent studies suggest that host species may differ in their protease repertoire available for cleavage. Furthermore, it was shown for certain bat-derived CoVs that proteolytic activation provides a critical barrier to infect human cells. Understanding the role of glycoprotein cleavage in different species and how IAV and CoVs adapt to a new protease repertoire may allow evaluating the zoonotic potential and risk posed by these viruses. Here, we summarize the current knowledge on the emergence of a multibasic cleavage site (CS) in the glycoproteins of IAVs and CoVs in different host species. Additionally, we discuss the role of transmembrane serine protease 2 (TMPRSS2) in virus activation and entry and a role of neuropilin-1 in acquisition of a multibasic CS in different hosts.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"58 ","pages":"Article 101303"},"PeriodicalIF":5.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9299542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the animal host in the management of bacteriophage resistance during phage therapy 动物宿主在噬菌体治疗过程中管理噬菌体耐药性的作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2023-02-01 DOI: 10.1016/j.coviro.2022.101290
Baptiste Gaborieau , Laurent Debarbieux
{"title":"The role of the animal host in the management of bacteriophage resistance during phage therapy","authors":"Baptiste Gaborieau ,&nbsp;Laurent Debarbieux","doi":"10.1016/j.coviro.2022.101290","DOIUrl":"10.1016/j.coviro.2022.101290","url":null,"abstract":"<div><p>Multi-drug-resistant bacteria are associated with significantly higher morbidity and mortality. The possibilities for discovering new antibiotics are limited, but phage therapy — the use of bacteriophages (viruses infecting bacteria) to cure infections — is now being investigated as an alternative or complementary treatment to antibiotics. However, one of the major limitations of this approach lies in the antagonistic coevolution between bacteria and bacteriophages, which determines the ultimate success or failure of phage therapy. Here, we review the possible influence of the animal host on phage resistance and its consequences for the efficacy of phage therapy. We also discuss the value of <em>in vitro</em> assays for anticipating the dynamics of phage resistance observed <em>in vivo</em>.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"58 ","pages":"Article 101290"},"PeriodicalIF":5.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9255236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Advances in the treatment of HTLV-1-associated adult T-cell leukemia lymphoma HTLV-1相关成人T细胞白血病淋巴瘤的治疗进展
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2023-02-01 DOI: 10.1016/j.coviro.2022.101289
Adrienne A Phillips
{"title":"Advances in the treatment of HTLV-1-associated adult T-cell leukemia lymphoma","authors":"Adrienne A Phillips","doi":"10.1016/j.coviro.2022.101289","DOIUrl":"10.1016/j.coviro.2022.101289","url":null,"abstract":"<div><p>Adult T-cell leukemia/lymphoma (ATLL) is an aggressive hematologic malignancy linked to HTLV-1 infection, which is refractory to therapy. The precise mechanism of oncogenesis in ATLL is incompletely understood, however, oncogenic viral genes Tax and Hbz are implicated, and recent large genomic and transcriptome studies provide further insight. Despite progress in understanding the disease, survival and outcome with current therapies remain poor. Long-term survivors are reported, primarily among those with indolent disease or activating CC chemokine receptor 4 mutations, however, allogeneic hematopoietic stem cell transplant is the only curative treatment option. The majority of patients succumb to their disease and ongoing and collaborative research efforts are needed. I will review recent updates in HTLV-1-associated ATLL epidemiology, pathogenesis, therapy, and prevention.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"58 ","pages":"Article 101289"},"PeriodicalIF":5.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9254612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation 蝙蝠副粘病毒:受体特异性的变化及其在宿主适应中的作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2023-02-01 DOI: 10.1016/j.coviro.2022.101292
Griffin D Haas, Benhur Lee
{"title":"Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation","authors":"Griffin D Haas,&nbsp;Benhur Lee","doi":"10.1016/j.coviro.2022.101292","DOIUrl":"10.1016/j.coviro.2022.101292","url":null,"abstract":"<div><p>Global metagenomic surveys have revealed that bats host a diverse array of paramyxoviruses, including species from at least five major genera. An essential determinant of successful spillover is the entry of a virus into a new host. We evaluate the role of receptor usage in the zoonotic potential of bat-borne henipaviruses, morbilliviruses, pararubulaviruses, orthorubulaviruses, and jeilongviruses; successful spillover into humans depends upon compatibility of a respective viral attachment protein with its cognate receptor. We also emphasize the importance of postentry restrictions in preventing spillover. Metagenomics and characterization of newly identified paramyxoviruses have greatly improved our understanding of spillover determinants, allowing for better forecasts of which bat-borne viruses may pose the greatest risk for cross-species transmission into humans.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"58 ","pages":"Article 101292"},"PeriodicalIF":5.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9308742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial overview: Special issue on phage therapy 编辑综述:噬菌体治疗特刊
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2023-02-01 DOI: 10.1016/j.coviro.2022.101300
Joana Azeredo , Jean Paul Pirnay
{"title":"Editorial overview: Special issue on phage therapy","authors":"Joana Azeredo ,&nbsp;Jean Paul Pirnay","doi":"10.1016/j.coviro.2022.101300","DOIUrl":"10.1016/j.coviro.2022.101300","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"58 ","pages":"Article 101300"},"PeriodicalIF":5.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9247808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic analysis of antiviral innate immunity 抗病毒先天免疫的蛋白质组学分析
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2023-02-01 DOI: 10.1016/j.coviro.2022.101291
Jonas D Albarnaz, Michael P Weekes
{"title":"Proteomic analysis of antiviral innate immunity","authors":"Jonas D Albarnaz,&nbsp;Michael P Weekes","doi":"10.1016/j.coviro.2022.101291","DOIUrl":"10.1016/j.coviro.2022.101291","url":null,"abstract":"<div><p>The capacity of host cells to detect and restrict an infecting virus rests on an array of cell-autonomous antiviral effectors and innate immune receptors that can trigger inflammatory processes at tissue and organismal levels. Dynamic changes in protein abundance, subcellular localisation, post-translational modifications and interactions with other biomolecules govern these processes. Proteomics is therefore an ideal experimental tool to discover novel mechanisms of host antiviral immunity. Additional information can be gleaned both about host and virus by systematic analysis of viral immune evasion strategies. In this review, we summarise recent advances in proteomic technologies and their application to antiviral innate immunity.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"58 ","pages":"Article 101291"},"PeriodicalIF":5.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9247792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus-host interactions during tick-borne bunyavirus infection 蜱传布尼亚病毒感染期间病毒与宿主的相互作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101278
Mazigh Fares , Benjamin Brennan
{"title":"Virus-host interactions during tick-borne bunyavirus infection","authors":"Mazigh Fares ,&nbsp;Benjamin Brennan","doi":"10.1016/j.coviro.2022.101278","DOIUrl":"10.1016/j.coviro.2022.101278","url":null,"abstract":"<div><p>The <em>Bunyavirales</em> order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101278"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187962572200089X/pdfft?md5=322e1b1046b8f279539d98d954c3106e&pid=1-s2.0-S187962572200089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10859295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy 核苷类似物治疗呼吸道病毒感染:作用机制和临床疗效
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101279
Annelies Stevaert , Elisabetta Groaz , Lieve Naesens
{"title":"Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy","authors":"Annelies Stevaert ,&nbsp;Elisabetta Groaz ,&nbsp;Lieve Naesens","doi":"10.1016/j.coviro.2022.101279","DOIUrl":"10.1016/j.coviro.2022.101279","url":null,"abstract":"<div><p>The COVID-19 pandemic has accelerated the development of nucleoside analogs to treat respiratory virus infections, with remdesivir being the first compound to receive worldwide authorization and three other nucleoside analogs (i.e. favipiravir, molnupiravir, and bemnifosbuvir) in the pipeline. Here, we summarize the current knowledge concerning their clinical efficacy in suppressing the virus and reducing the need for hospitalization or respiratory support. We also mention trials of favipiravir and lumicitabine, for influenza and respiratory syncytial virus, respectively. Besides, we outline how nucleoside analogs interact with the polymerases of respiratory viruses, to cause lethal virus mutagenesis or disturbance of viral RNA synthesis. In this way, we aim to convey the key findings on this rapidly evolving class of respiratory virus medication.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101279"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9575564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Role of cytokines in poxvirus host tropism and adaptation 细胞因子在痘病毒宿主趋向性和适应性中的作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101286
Masmudur M Rahman, Grant McFadden
{"title":"Role of cytokines in poxvirus host tropism and adaptation","authors":"Masmudur M Rahman,&nbsp;Grant McFadden","doi":"10.1016/j.coviro.2022.101286","DOIUrl":"10.1016/j.coviro.2022.101286","url":null,"abstract":"<div><p>Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101286"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Editorial overview: Virus structure and expression 编辑概述:病毒结构和表达
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101277
José R Castón, Adam Zlotnick
{"title":"Editorial overview: Virus structure and expression","authors":"José R Castón,&nbsp;Adam Zlotnick","doi":"10.1016/j.coviro.2022.101277","DOIUrl":"10.1016/j.coviro.2022.101277","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101277"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10351129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信