Current opinion in virology最新文献

筛选
英文 中文
Virus-host interactions during tick-borne bunyavirus infection 蜱传布尼亚病毒感染期间病毒与宿主的相互作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101278
Mazigh Fares , Benjamin Brennan
{"title":"Virus-host interactions during tick-borne bunyavirus infection","authors":"Mazigh Fares ,&nbsp;Benjamin Brennan","doi":"10.1016/j.coviro.2022.101278","DOIUrl":"10.1016/j.coviro.2022.101278","url":null,"abstract":"<div><p>The <em>Bunyavirales</em> order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101278"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187962572200089X/pdfft?md5=322e1b1046b8f279539d98d954c3106e&pid=1-s2.0-S187962572200089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10859295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy 核苷类似物治疗呼吸道病毒感染:作用机制和临床疗效
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101279
Annelies Stevaert , Elisabetta Groaz , Lieve Naesens
{"title":"Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy","authors":"Annelies Stevaert ,&nbsp;Elisabetta Groaz ,&nbsp;Lieve Naesens","doi":"10.1016/j.coviro.2022.101279","DOIUrl":"10.1016/j.coviro.2022.101279","url":null,"abstract":"<div><p>The COVID-19 pandemic has accelerated the development of nucleoside analogs to treat respiratory virus infections, with remdesivir being the first compound to receive worldwide authorization and three other nucleoside analogs (i.e. favipiravir, molnupiravir, and bemnifosbuvir) in the pipeline. Here, we summarize the current knowledge concerning their clinical efficacy in suppressing the virus and reducing the need for hospitalization or respiratory support. We also mention trials of favipiravir and lumicitabine, for influenza and respiratory syncytial virus, respectively. Besides, we outline how nucleoside analogs interact with the polymerases of respiratory viruses, to cause lethal virus mutagenesis or disturbance of viral RNA synthesis. In this way, we aim to convey the key findings on this rapidly evolving class of respiratory virus medication.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101279"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9575564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Role of cytokines in poxvirus host tropism and adaptation 细胞因子在痘病毒宿主趋向性和适应性中的作用
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101286
Masmudur M Rahman, Grant McFadden
{"title":"Role of cytokines in poxvirus host tropism and adaptation","authors":"Masmudur M Rahman,&nbsp;Grant McFadden","doi":"10.1016/j.coviro.2022.101286","DOIUrl":"10.1016/j.coviro.2022.101286","url":null,"abstract":"<div><p>Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101286"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Editorial overview: Virus structure and expression 编辑概述:病毒结构和表达
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101277
José R Castón, Adam Zlotnick
{"title":"Editorial overview: Virus structure and expression","authors":"José R Castón,&nbsp;Adam Zlotnick","doi":"10.1016/j.coviro.2022.101277","DOIUrl":"10.1016/j.coviro.2022.101277","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101277"},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10351129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Retasking of canonical antiviral factors into proviral effectors 将经典抗病毒因子重新分配为原病毒效应器
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101271
Cason R King , Andrew Mehle
{"title":"Retasking of canonical antiviral factors into proviral effectors","authors":"Cason R King ,&nbsp;Andrew Mehle","doi":"10.1016/j.coviro.2022.101271","DOIUrl":"10.1016/j.coviro.2022.101271","url":null,"abstract":"<div><p>Under constant barrage by viruses<span><span>, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically </span>antiviral proteins<span> and retasking them for proviral purposes.</span></span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"56 ","pages":"Article 101271"},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9279884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ribosomes in poxvirus infection 痘病毒感染中的核糖体
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101256
Chorong Park, Derek Walsh
{"title":"Ribosomes in poxvirus infection","authors":"Chorong Park,&nbsp;Derek Walsh","doi":"10.1016/j.coviro.2022.101256","DOIUrl":"10.1016/j.coviro.2022.101256","url":null,"abstract":"<div><p><span><span><span>Poxviruses are large double-stranded DNA </span>viruses that encode their own </span>DNA replication, transcription, and mRNA biogenesis machinery, which underlies their ability to replicate entirely in the cytoplasm. However, like all other viruses, poxviruses remain dependent on host ribosomes to translate their mRNAs into the </span>viral proteins<span> needed to complete their replication cycle. While earlier studies established a fundamental understanding of how poxviruses wrestle with their hosts for control of translation initiation and elongation factors that guide ribosome recruitment and mRNA decoding, recent work has begun to reveal the extent to which poxviruses directly target the ribosome itself. This review summarizes our current understanding of the regulation of ribosomes and translation in poxvirus infection.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"56 ","pages":"Article 101256"},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9311702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
RNA polymerase II subunit modulation during viral infection and cellular stress RNA聚合酶II亚基在病毒感染和细胞应激中的调节
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101259
Leah Gulyas , Britt A Glaunsinger
{"title":"RNA polymerase II subunit modulation during viral infection and cellular stress","authors":"Leah Gulyas ,&nbsp;Britt A Glaunsinger","doi":"10.1016/j.coviro.2022.101259","DOIUrl":"10.1016/j.coviro.2022.101259","url":null,"abstract":"<div><p>Control of gene expression, including transcription, is central in dictating the outcome of viral infection. One of the profound alterations induced by viruses is modification to the integrity and function of eukaryotic RNA polymerase II (Pol II). Here, we discuss how infection perturbs the Pol II complex by altering subunit phosphorylation and turnover, as well as how cellular genotoxic stress (e.g. DNA damage) elicits similar outcomes. By highlighting emerging parallels and differences in Pol II control during viral infection and abiotic stress, we hope to bolster identification of pathways that target Pol II and regulate the transcriptome.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"56 ","pages":"Article 101259"},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9381047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hepatitis E virus species barriers: seeking viral and host determinants 戊型肝炎病毒物种屏障:寻找病毒和宿主决定因素
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101274
Volker Kinast , Mara Klöhn , Maximilian K Nocke , Daniel Todt , Eike Steinmann
{"title":"Hepatitis E virus species barriers: seeking viral and host determinants","authors":"Volker Kinast ,&nbsp;Mara Klöhn ,&nbsp;Maximilian K Nocke ,&nbsp;Daniel Todt ,&nbsp;Eike Steinmann","doi":"10.1016/j.coviro.2022.101274","DOIUrl":"10.1016/j.coviro.2022.101274","url":null,"abstract":"<div><p>The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either ‘single-host’ or ‘multi-host’ genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"56 ","pages":"Article 101274"},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000852/pdfft?md5=c6595d1b70c91638f0ef10d0877e457d&pid=1-s2.0-S1879625722000852-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40657583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications microrna介导的eb病毒感染控制及其潜在的诊断和治疗意义
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101272
Rebecca L Skalsky
{"title":"MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications","authors":"Rebecca L Skalsky","doi":"10.1016/j.coviro.2022.101272","DOIUrl":"10.1016/j.coviro.2022.101272","url":null,"abstract":"<div><p><span>Herpesviruses<span>, such as Epstein–Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets </span></span><em>in vitro</em>, our understanding of their contributions to pathogenesis <em>in vivo</em><span>, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"56 ","pages":"Article 101272"},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33512431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Co-opted membranes, lipids, and host proteins: what have we learned from tombusviruses? 增选膜、脂质和宿主蛋白:我们从瘤状病毒中学到了什么?
IF 5.9 2区 医学
Current opinion in virology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101258
Peter D Nagy
{"title":"Co-opted membranes, lipids, and host proteins: what have we learned from tombusviruses?","authors":"Peter D Nagy","doi":"10.1016/j.coviro.2022.101258","DOIUrl":"10.1016/j.coviro.2022.101258","url":null,"abstract":"<div><p><span>Positive-strand RNA viruses replicate in intracellular membranous structures formed after virus-driven intensive manipulation of subcellular organelles and membranes. These unique structures are called viral-replication organelles (VROs). To build VROs, the </span>replication proteins<span><span> coded by (+)RNA viruses co-opt host proteins, including membrane-shaping, lipid synthesis<span>, and lipid-modification enzymes to create an optimal microenvironment that (i) concentrates the viral replicase and associated host proteins and the viral RNAs; (ii) regulates enzymatic activities and spatiotemporally the replication process; and (iii) protects the viral RNAs from recognition and degradation by the host innate immune defense. </span></span>Tomato bushy stunt virus<span> (TBSV), a plant (+)RNA virus, serves as an advanced model to study the interplay among viral components, co-opted host proteins, lipids, and membranes. This review presents our current understanding of the complex interaction between TBSV and host with panviral implications.</span></span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"56 ","pages":"Article 101258"},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40377763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信