蜱传布尼亚病毒感染期间病毒与宿主的相互作用

IF 5.7 2区 医学 Q1 VIROLOGY
Mazigh Fares , Benjamin Brennan
{"title":"蜱传布尼亚病毒感染期间病毒与宿主的相互作用","authors":"Mazigh Fares ,&nbsp;Benjamin Brennan","doi":"10.1016/j.coviro.2022.101278","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>Bunyavirales</em> order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"57 ","pages":"Article 101278"},"PeriodicalIF":5.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187962572200089X/pdfft?md5=322e1b1046b8f279539d98d954c3106e&pid=1-s2.0-S187962572200089X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Virus-host interactions during tick-borne bunyavirus infection\",\"authors\":\"Mazigh Fares ,&nbsp;Benjamin Brennan\",\"doi\":\"10.1016/j.coviro.2022.101278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>Bunyavirales</em> order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.</p></div>\",\"PeriodicalId\":11082,\"journal\":{\"name\":\"Current opinion in virology\",\"volume\":\"57 \",\"pages\":\"Article 101278\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S187962572200089X/pdfft?md5=322e1b1046b8f279539d98d954c3106e&pid=1-s2.0-S187962572200089X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187962572200089X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187962572200089X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Bunyavirales目是RNA病毒中最大的一组,包括新出现和再出现的人类、植物和动物病原体。布尼亚病毒在全球分布,该目的许多成员通过节肢动物传播。它们已经进化出了大量的机制来操纵受感染细胞的调节过程,以促进它们自己的复制周期,在不同的系统发生的宿主中。对病毒-载体相互作用的兴趣正在迅速增长。然而,目前对蜱传布尼亚病毒细胞相互作用的理解严重偏向于在哺乳动物系统中进行的研究。在这篇简短的综述中,我们总结了目前对蜱传布尼病毒如何利用哺乳动物或蜱细胞中的主要细胞途径(先天免疫、细胞凋亡和RNAi反应)来促进病毒复制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virus-host interactions during tick-borne bunyavirus infection

The Bunyavirales order is the largest grouping of RNA viruses, comprising emerging and re-emerging human, plant and animal pathogens. Bunyaviruses have a global distribution and many members of the order are transmitted by arthropods. They have evolved a plethora of mechanisms to manipulate the regulatory processes of the infected cell to facilitate their own replicative cycle, in hosts of disparate phylogenies. Interest in virus-vector interactions is growing rapidly. However, current understanding of tick-borne bunyavirus cellular interaction is heavily biased to studies conducted in mammalian systems. In this short review, we summarise current understandings of how tick-borne bunyaviruses utilise major cellular pathways (innate immunity, apoptosis and RNAi responses) in mammalian or tick cells to facilitate virus replication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
5.10%
发文量
76
审稿时长
83 days
期刊介绍: Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信