Current topics in medicinal chemistry最新文献

筛选
英文 中文
Advances in the Study for Modulators of Transient Receptor Potential Vanilloid (TRPV) Channel Family.
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2025-01-02 DOI: 10.2174/0115680266294569241115053420
Yajing Wang, Yingying Shi, Minmin Zuo, Yingcong Yu, Xianfeng Huang
{"title":"Advances in the Study for Modulators of Transient Receptor Potential Vanilloid (TRPV) Channel Family.","authors":"Yajing Wang, Yingying Shi, Minmin Zuo, Yingcong Yu, Xianfeng Huang","doi":"10.2174/0115680266294569241115053420","DOIUrl":"https://doi.org/10.2174/0115680266294569241115053420","url":null,"abstract":"<p><p>Transient receptor potential vanilloid (TRPV) channels are a member of the TRP superfamily, which consists of six proteins and is expressed in many neuronal and non-neuronal cells. Among them, TRPV1-4 are non-selective cation channels that are highly sensitive to temperature changes, while TRPV5-6 are channels that are highly selective to Ca2+. These cation channels have attracted great interest academically, especially from a pharmacological perspective. TRPV channels play a vital role in many physiological processes and can be regulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. The regulation of their activities can lead to a variety of diseases and disorders, such as neurodegenerative diseases, pain, cancer, and skin diseases. In fact, several TRPV1 and TRPV3 modulators have been developed for clinical use. Therefore, the development of TRPV channel modulators has important clinical significance and value. Herein, we focused on and summarized the latest research progress of endogenous and exogenous ligands of six TRPV channels and their pharmacological effects on related diseases.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Synthesis of 1-(4-Bromo-2-(Pyrrolidine-1-Yl) Benzyl) Piperidine-Based Derivatives as Anti-Tubulin Agents.
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2025-01-02 DOI: 10.2174/0115680266336578241114072129
Rambabu Guguloth, Shiva Kumar Gubbiyappa
{"title":"Design and Synthesis of 1-(4-Bromo-2-(Pyrrolidine-1-Yl) Benzyl) Piperidine-Based Derivatives as Anti-Tubulin Agents.","authors":"Rambabu Guguloth, Shiva Kumar Gubbiyappa","doi":"10.2174/0115680266336578241114072129","DOIUrl":"https://doi.org/10.2174/0115680266336578241114072129","url":null,"abstract":"<p><strong>Background: </strong>Piperidines are among the essential synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. The synthesis of newer derivatives by incorporating different amines paves the way for the introduction of novel drug combinations for current cancer treatments.</p><p><strong>Method: </strong>The new combinations of 1-(4-bromo-2-(pyrrolidine-1-yl) benzyl) piperidine derivatives were synthesized by adding various amino groups. All the synthesized derivatives were characterized using NMR and LC-MS. The anti-cancer activity of all the synthesized derivatives was studied on three different cell lines, A549 (lung cancer), HCT-116 (colon cancer), and MCF-7(breast cancer), using an MTT assay. The most potent compounds, 7h and 7k were further evaluated for cell cycle and tubulin polymerization inhibitory activity. Further, in-silico analysis for the same properties was performed using molecular docking using MM/GBSA and validated by RMSD.</p><p><strong>Results: </strong>All the synthesized derivatives showed selective cytotoxic potential against different cancer cell lines. Most of the derivatives displayed comparable anticancer potential in comparison to 5-FU. The most potent derivative, 7h, further arrests the cancer cells in the G2/M phase and prevents tubulin polymerization. The same was further confirmed using molecular docking on the colchicine binding site.</p><p><strong>Conclusion: </strong>The derivative that arrests the cancer cells in the G2/M phase of the cell cycle and induces depolymerization can be developed as a good lead for further development.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Copper(II) and Silver(I) Complexes Containing 1,10-Phenanthroline-5,6-dione on Cellular and Virulence Aspects of Scedosporium apiospermum.
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115680266327984241018111547
Thaís Pereira de Mello, Bianca A Silva, Viviane Lione, Michael Devereux, Malachy McCann, Marta Helena Branquinha, André Luis Souza Dos Santos
{"title":"Impact of Copper(II) and Silver(I) Complexes Containing 1,10-Phenanthroline-5,6-dione on Cellular and Virulence Aspects of Scedosporium apiospermum.","authors":"Thaís Pereira de Mello, Bianca A Silva, Viviane Lione, Michael Devereux, Malachy McCann, Marta Helena Branquinha, André Luis Souza Dos Santos","doi":"10.2174/0115680266327984241018111547","DOIUrl":"https://doi.org/10.2174/0115680266327984241018111547","url":null,"abstract":"<p><strong>Background: </strong>Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.</p><p><strong>Objective: </strong>The effects of these promising complexes, [Cu(phendione)3](ClO4)2.4H2O (Cuphendione) and [Ag(phendione)2]ClO4 (Ag-phendione), on vital biological processes, production of key virulence attributes and interaction events of S. apiospermum were investigated using a comprehensive multimodal approach.</p><p><strong>Results: </strong>The results demonstrated that both Cu-phendione and Ag-phendione effectively inhibited the viability of S. apiospermum mycelial cells in a dose-dependent manner. Furthermore, these test complexes, at varying concentrations, inhibited the transition of S. apiospermum conidia into hyphae. Scanning electron microscopy revealed significant structural alterations in the fungal cells, including changes to surface sculpturing and overall morphological architecture, following treatment with the complexes. A marked reduction in the expression of key surface molecules, such as mannose/glucose-rich glycoconjugates, fibronectin-binding proteins, and the well-known adhesin peptidorhamnomannan further supported these ultrastructural changes. The treatment also impaired adhesive interactions, reducing the fungus's ability to form biofilms on polystyrene surfaces and diminishing its interaction with macrophages, lung epithelial cells, and fibroblasts. Notably, treatment of infected macrophages with the complexes led to a significant reduction in the number of intracellular fungal cells.</p><p><strong>Conclusion: </strong>The results provide information about the effects of silver- and copper-phendione complexes on cellular and virulence aspects of the emerging fungus S. apiospermum.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Updates on Intrinsic Medicinal Chemistry of 1,4-dihydropyridines, Perspectives on Synthesis and Pharmacokinetics of Novel 1,4-dihydropyrimidines as Calcium Channel Blockers: Clinical Pharmacology.
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0115680266323908241114064318
Chiriki Devi Sri, Narasimha Murthy Beeraka, Hemanth Vikram P R, Durgesh Paresh Bidye, B R Prashantha Kumar, Vladimir N Nikolenko, Gurupadayya Bannimath
{"title":"Updates on Intrinsic Medicinal Chemistry of 1,4-dihydropyridines, Perspectives on Synthesis and Pharmacokinetics of Novel 1,4-dihydropyrimidines as Calcium Channel Blockers: Clinical Pharmacology.","authors":"Chiriki Devi Sri, Narasimha Murthy Beeraka, Hemanth Vikram P R, Durgesh Paresh Bidye, B R Prashantha Kumar, Vladimir N Nikolenko, Gurupadayya Bannimath","doi":"10.2174/0115680266323908241114064318","DOIUrl":"https://doi.org/10.2174/0115680266323908241114064318","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina. Among the vascular-selective DHPs, nifedipine, felodipine, and isradipine are key representatives, with nifedipine often considered the archetype due to its widespread use and efficacy in promoting vascular relaxation. Significant efforts have been made to modify the structure of nifedipine, the prototype of DHPs to better understand structure-activity relationships (SARs) and amplify calcium-modulating effects.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;The objective of this study is to explore the SARs of various DHPs and the implications of 1,4- dihydropyrimidines (DHPMs) to block L- (CaV1.2)/T-type (CaV3.1 and CaV3.2) calcium channels subtypes in medicinal chemistry and physiology as calcium channel blockers (CCBs).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;We have searched public databases such as National Library of Medicine (NLM), PubMed, and Google Scholar. Collected information pertinent to these chemical entities from reviews, and original articles. We have used keywords to search in these databases such as 'calcium channel physiology', 'calcium channel blockers', 'medicinal chemistry', '1,4-dihydropyridines', and '1,4-dihydropyrimidines', 'structure-activity relationship'. We included the original articles, short communications, meta-analysis, and review articles published from the years 1975 to 2024.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Previous efforts by medicinal chemists have made significant strides in the synthesis of DHPs and DHPMs. These researchers have focused on creating CCBs that could effectively replicate the pharmacological properties of those currently in clinical use. While the standard one-pot synthesis of DHPMs typically involves three key components under various reaction conditions, more intricate synthetic routes have also been explored. These include enzyme-catalyzed processes, solvent-free reactions, ultrasonic methods, conventional reactions, acid-catalyzed pathways, and microwave-assisted synthesis, each of which offers distinct advantages and potential for the efficient production of DHPMs. DHPs have been the focus of significant research efforts to improve their potency and selectivity. However, a major limitation identified for this class of compounds is their short plasma half-life, potentially caused by metabolic oxidation to pyridine derivatives. To address these limitations, developing DHPMs through efficient modifications of the DHP scaffold has been explored. This research has also investigated ","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroactive Phytoconstituents of Glycyrrhiza glabra for the Treatment of Alzheimer's Disease.
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2024-12-26 DOI: 10.2174/0115680266357793241223100307
Mansi Verma, Mohd Usman Ms, Niraj Kumar Singh
{"title":"Neuroactive Phytoconstituents of Glycyrrhiza glabra for the Treatment of Alzheimer's Disease.","authors":"Mansi Verma, Mohd Usman Ms, Niraj Kumar Singh","doi":"10.2174/0115680266357793241223100307","DOIUrl":"https://doi.org/10.2174/0115680266357793241223100307","url":null,"abstract":"<p><p>Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, poses a significant global health challenge with complicated pathogenesis. Pathological characteristics of AD include increasing loss of cholinergic neurons, oxidative stress, mitochondrial dysfunction, and amyloid beta accumulation. Due to the limited availability of effective therapeutic options with only symptomatic relief and their severe adverse effects, there is a significant need to search and explore new agents for the management of AD. Recently, natural products and/or phytoconstituents of plants have gained notable attention as potential sources of neuroprotective agents due to their diverse chemical constituents, mechanism of action, and relatively safe profiles. In view of this, Glycyrrhiza glabra has been recognized for its several therapeutic properties in traditional medicine systems for centuries. Further, neuroactive phytoconstituents of this plant, including glycyrrhizin, liquiritigenin, isoliquiritigenin, glabridin, and glycyrrhizic acid, exhibit significant pharmacological advantages along with potential neuroprotective effects against AD. Glycyrrhiza glabra and its phytoconstituents have gained significant interest due to its ability to exert a neuroprotective impact by influencing multiple signaling pathways, inhibiting AChE and BACE1 activity, reducing Aβ accumulation, plaque formation, and tau phosphorylation, and quenching the free radical in experimentally-induced AD-like brain. The present review summarizes available in vitro and in vivo preclinical studies that have been performed to evaluate the beneficial neuroprotective effect of Glycyrrhiza glabra and its phytoconstituents against AD-like pathology. Based on available facts, it can be concluded that neuroactive phytoconstituents of Glycyrrhiza glabra could be significant lead molecules for the drug discovery of anti-AD medicines in the future.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thymol-Loaded Zinc Ferrite Nanoparticles: A Novel Carrier for Enhanced Antimicrobial and Antibiofilm Activity against M. smegmatis through ROS-Mediated Mechanism. 胸腺酚负载锌铁氧体纳米粒子:一种通过 ROS 媒介机制增强对 M. smegmatis 抗菌和抗生物膜活性的新型载体。
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2024-12-16 DOI: 10.2174/0115680266348684241211072446
Bhabani Shankar Das, Ashirbad Saragi, Lipsa Leena Panigrahi, Sunita Nayak, Manoranjan Arakha, Debapriya Bhattacharya
{"title":"Thymol-Loaded Zinc Ferrite Nanoparticles: A Novel Carrier for Enhanced Antimicrobial and Antibiofilm Activity against M. smegmatis through ROS-Mediated Mechanism.","authors":"Bhabani Shankar Das, Ashirbad Saragi, Lipsa Leena Panigrahi, Sunita Nayak, Manoranjan Arakha, Debapriya Bhattacharya","doi":"10.2174/0115680266348684241211072446","DOIUrl":"https://doi.org/10.2174/0115680266348684241211072446","url":null,"abstract":"<p><strong>Introduction/objective: </strong>Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.</p><p><strong>Methods: </strong>A nanoparticle-based delivery system was developed using biocompatible Thymolconjugated Chitosan Zinc Ferrite Nanoparticles (THY-CH-ZnFe2O4 NPs). The nanoconjugates were characterized for their morphological and chemical properties.</p><p><strong>Results: </strong>The characterization of synthesised nanoparticles showed THY-CH-ZnFe2O4 NPs to exhibit enhanced biocompatibility and antibacterial activity against M. smegmatis compared to THY alone. The nanoconjugates induced Reactive Oxygen Species (ROS)-mediated damage to the bacterial cell membrane, effectively inhibiting bacterial replication, dormancy, and biofilm formation. Additionally, the nanoconjugates demonstrated low cytotoxicity towards the human kidney cell line.</p><p><strong>Conclusion: </strong>The study's findings highlighted a new direction for developing nanoparticle-based antimycobacterial agents with a wide application in treating TB and other bacterial diseases. The THY-CH-ZnFe2O4 NPs show promise as a safe and effective therapeutic agent, offering a potential solution to the limitations of current TB treatment strategies.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies in Parkinson's Disease Therapeutics - A Need for Synergy of Ayurveda, Small Molecules and Nanoparticles aided Approaches. 帕金森病治疗策略--需要阿育吠陀、小分子和纳米颗粒辅助疗法的协同作用。
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2024-11-27 DOI: 10.2174/0115680266314877241105051752
Shatabdi Choudhury, Archi Garg, Lakshmi Anand, Muchukunte Mukunda Srinivas Bharath, Ravi Yadav, Phalguni Anand Alladi
{"title":"Strategies in Parkinson's Disease Therapeutics - A Need for Synergy of Ayurveda, Small Molecules and Nanoparticles aided Approaches.","authors":"Shatabdi Choudhury, Archi Garg, Lakshmi Anand, Muchukunte Mukunda Srinivas Bharath, Ravi Yadav, Phalguni Anand Alladi","doi":"10.2174/0115680266314877241105051752","DOIUrl":"https://doi.org/10.2174/0115680266314877241105051752","url":null,"abstract":"<p><p>Despite extensive research, there is an unmet need for developing disease-modifying therapies for Parkinson's disease (PD). Failure of certain landmark clinical trials has highlighted the need for a better understanding of the disease pathogenesis as well as identifying the hurdles in developing drug candidates and designing clinical trials. While adhering to these needs, several promising trials are currently underway with the hope of developing reliable targets. There is also a need to conduct research on plant-based natural products and use them as therapeutic candidates for PD. In this context, many studies have demonstrated the efficacy of medicinal plants and their principal phytochemicals. This review provides an update on the presently underway clinical trials with a small emphasis on the disease modifying therapies that target small molecules, mitochondria, and oligodendrocytes. The role of ethnopharmacology-based approaches for treatment of PD has also been discussed. The third aspect of the article considers the importance of nanomedicine in this area, including the use of liposomes and nanoparticles to provide a novel approach for the treatment of PD.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Computational Tools to Identify DNA Repeats and Motifs: A Systematic Review. 识别 DNA 重复序列和基元的计算工具:系统综述》(The Computational Tools to Identify DNA Repeats and Motifs: A Systematic Review.
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2024-11-21 DOI: 10.2174/0115680266331305241113172257
Kavya Singh, Shreya Srivastava, Ashish Prabhu, Navjeet Kaur
{"title":"The Computational Tools to Identify DNA Repeats and Motifs: A Systematic Review.","authors":"Kavya Singh, Shreya Srivastava, Ashish Prabhu, Navjeet Kaur","doi":"10.2174/0115680266331305241113172257","DOIUrl":"https://doi.org/10.2174/0115680266331305241113172257","url":null,"abstract":"<p><strong>Introduction: </strong>DNA repeats and motifs are specific nucleotide patterns/DNA sequences frequently present in the genomes of prokaryotes and eukaryotes. Computational identification of these discrete patterns is of considerable importance since they are associated with gene regulation, genomic instability, and genetic diversity and result in a variety of diseases/disorders.</p><p><strong>Objective: </strong>In this article, the myriad of computational tools/algorithms and databases (~200 distinct resources) implicated in the detection of DNA repeats and motifs have been enlisted. This article will not only provide guidance to the users regarding the accuracy, reliability, and popularity (reflected by the citation index) of currently available tools but also enable them to select the best tool(s) to carry out a desired task.</p><p><strong>Methods: </strong>The structured literature review, with its dependable and reproducible research process, allowed us to acquire 200 peer-reviewed publications from indexing databases, such as Scopus, ScienceDirect, Web of Science (WoS), PubMed, and EMBASE, by utilizing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) regulations. Numerous keyword combinations regarding DNA repeats and motifs were used to create the query syntax.</p><p><strong>Results: </strong>Initially, 3,233 research publications were retrieved, and 200 of them that satisfied the eligibility criteria for the detection and identification of DNA repeats and motifs by computational tools were chosen. A total of 200 research publications were recovered, of which 99 dealt with repeat prediction tools, 12 with repetitive sequence databases, 19 with specialized regulatory element databases, and 69 with motif prediction tools.</p><p><strong>Conclusion: </strong>This article lists numerous databases and computational tools/algorithms (~ 200 different resources) that are involved in the identification of DNA repeats and motifs. It will help users choose the appropriate tool(s) for carrying out a particular task in addition to offering guidance on the reliability, dependability, and popularity (as indicated by the citation index) of currently available tools.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Herbs with Potential Modulation of NLRP3 Inflammasomes for Acute Liver Failure: A Study Based on the Herb-Compound-Target Network and the ssGSEA Algorithm. 筛选可能调节急性肝衰竭 NLRP3 炎症体的草药:基于草药-化合物-靶标网络和ssGSEA算法的研究
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2024-11-08 DOI: 10.2174/0115680266331775241024064136
Haiya Ou, Susu Qiu, Xiaopeng Ye, Xiaotong Wang
{"title":"Screening of Herbs with Potential Modulation of NLRP3 Inflammasomes for Acute Liver Failure: A Study Based on the Herb-Compound-Target Network and the ssGSEA Algorithm.","authors":"Haiya Ou, Susu Qiu, Xiaopeng Ye, Xiaotong Wang","doi":"10.2174/0115680266331775241024064136","DOIUrl":"https://doi.org/10.2174/0115680266331775241024064136","url":null,"abstract":"<p><strong>Objective: </strong>NLRP3 inflammasomes are considered to be key factors in the pathogenesis of Acute Liver Failure (ALF). Some Traditional Chinese Medicines (TCMs) have shown protective and therapeutic effects against ALF by inhibiting NLRP3 inflammasomes. However, the inhibitory effects of most TCMs on ALF remain to be further elucidated. This study aimed to screen potential herbs that can treat ALF based on the inhibition of NLRP3 inflammasomes.</p><p><strong>Methods: </strong>Initially, we constructed the target set for 502 herbs. Subsequently, based on the target set and the gene set related to the NLRP3 inflammasome, using the ssGSEA algorithm, we evaluated herb scores and NLRP3 scores in the ALF expression matrix and performed a preliminary herb screening based on score correlations. Through bioinformatics approaches, we identified the key targets for candidate herbs and determined core herbs based on the herb-compound-target network. Furthermore, molecular docking and molecular biology methods validated the screening results of the herbs.</p><p><strong>Results: </strong>A total of 18 crucial targets associated with the inhibition of the NLRP3 inflammasome were identified, which included ALDH2, HMOX1, and VEGFA. Subsequently, based on these key targets, a set of 10 primary herbs was chosen, notably Qinghao, Duzhong, and Gouteng. Moreover, the results were verified through molecular docking and molecular dynamic simulation.</p><p><strong>Conclusion: </strong>Ten key herbs have been identified as potential inhibitors of the NLRP3 inflammasome, offering insights into ALF therapy for drug development.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer-aided Drug Discovery of Epigenetic Modulators in Dual-target Therapy of Multifactorial Diseases. 多因素疾病双靶点治疗中表观遗传调节剂的计算机辅助药物发现。
IF 2.9 4区 医学
Current topics in medicinal chemistry Pub Date : 2024-11-04 DOI: 10.2174/0115680266337668241025061804
Slavica Oljacic, Marija Popovic Nikolic, Brankica Filipic, Zarko Gagic, Katarina Nikolic
{"title":"Computer-aided Drug Discovery of Epigenetic Modulators in Dual-target Therapy of Multifactorial Diseases.","authors":"Slavica Oljacic, Marija Popovic Nikolic, Brankica Filipic, Zarko Gagic, Katarina Nikolic","doi":"10.2174/0115680266337668241025061804","DOIUrl":"https://doi.org/10.2174/0115680266337668241025061804","url":null,"abstract":"<p><p>Numerous studies suggest that common genetic and epigenetic factors such as p53, histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), the (Ataxia Telangiectasia mutated) ATM gene, cyclin-dependent kinase 5 (CDK5), glycogen synthase kinase 3 (GSK3) and altered expression of microRNA (miRNA) play a crucial role in cancer and neurodegeneration. As there is growing evidence that epigenetic aberrations in cancer and neurological diseases lead to complex pathophysiological changes, the simultaneous targeting of epigenetic and other related pathways by dual-target inhibitors may contribute to the discovery of more effective and personalized therapeutic options. Computer-Aided Drug Design (CADD) provides comprehensive bioinformatic, chemoinformatic, and chemometric approaches for the design of novel chemotypes of epigenetic dual-target inhibitors, enabling efficient discovery of new drug candidates for innovative treatments of these multifactorial diseases. The detailed anticancer mechanisms by which the epigenetic dual-target inhibitors alter metastatic and tumorigenic properties, influence the tumor microenvironment, or regulate the immune response are also presented and discussed in the review. To improve our understanding of the pathogenesis of cancer and neurodegeneration, this review discusses novel therapeutic agents targeting different molecular mechanisms involved in these multifactorial diseases.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信