Current opinion in microbiology最新文献

筛选
英文 中文
Sensing and responding to host-derived stress signals: lessons from fungal meningitis pathogen 感知和应对来自宿主的压力信号:从真菌脑膜炎病原体中汲取的教训
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-18 DOI: 10.1016/j.mib.2024.102514
Kwang-Woo Jung , Seung-Heon Lee , Kyung-Tae Lee , Yong-Sun Bahn
{"title":"Sensing and responding to host-derived stress signals: lessons from fungal meningitis pathogen","authors":"Kwang-Woo Jung ,&nbsp;Seung-Heon Lee ,&nbsp;Kyung-Tae Lee ,&nbsp;Yong-Sun Bahn","doi":"10.1016/j.mib.2024.102514","DOIUrl":"10.1016/j.mib.2024.102514","url":null,"abstract":"<div><p>The sophisticated ability of living organisms to sense and respond to external stimuli is critical for survival. This is particularly true for fungal pathogens, where the capacity to adapt and proliferate within a host is essential. To this end, signaling pathways, whether evolutionarily conserved or unique, have been refined through interactions with the host. <em>Cryptococcus neoformans</em>, an opportunistic fungal pathogen, is responsible for over 190,000 cases and an estimated 147,000 annual deaths globally. Extensive research over the past decades has shed light on the signaling pathways underpinning the pathogenicity of <em>C. neoformans</em>, as well as the host’s responses during infection. In this context, we delineate the regulatory mechanisms employed by <em>C. neoformans</em> to detect and react to stresses derived from the host.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102514"},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Systems and synthetic biology of microbial cells and communities 编辑综述:微生物细胞和群落的系统与合成生物学。
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-18 DOI: 10.1016/j.mib.2024.102517
Victor Sourjik , Kiran Raosaheb Patil
{"title":"Editorial overview: Systems and synthetic biology of microbial cells and communities","authors":"Victor Sourjik ,&nbsp;Kiran Raosaheb Patil","doi":"10.1016/j.mib.2024.102517","DOIUrl":"10.1016/j.mib.2024.102517","url":null,"abstract":"","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102517"},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Linking cellular regulation and metabolic functions: from signals to mechanisms 编辑综述:将细胞调控与代谢功能联系起来:从信号到机制
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-18 DOI: 10.1016/j.mib.2024.102513
Jürgen Lassak , Natalia Tschowri
{"title":"Editorial overview: Linking cellular regulation and metabolic functions: from signals to mechanisms","authors":"Jürgen Lassak ,&nbsp;Natalia Tschowri","doi":"10.1016/j.mib.2024.102513","DOIUrl":"10.1016/j.mib.2024.102513","url":null,"abstract":"","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102513"},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connecting microbial community assembly and function 连接微生物群落的组合与功能
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-16 DOI: 10.1016/j.mib.2024.102512
Leonora S Bittleston
{"title":"Connecting microbial community assembly and function","authors":"Leonora S Bittleston","doi":"10.1016/j.mib.2024.102512","DOIUrl":"10.1016/j.mib.2024.102512","url":null,"abstract":"<div><p>Microbial ecology is moving away from purely descriptive analyses to experiments that can determine the underlying mechanisms driving changes in community assembly and function. More species-rich microbial communities generally have higher functional capabilities depending on if there is positive selection of certain species or complementarity among different species. When building synthetic communities or laboratory enrichment cultures, there are specific choices that can increase the number of species able to coexist. Higher resource complexity or the addition of physical niches are two of the many factors leading to greater biodiversity and associated increases in functional capabilities. We can use principles from community ecology and knowledge of microbial physiology to generate improved microbiomes for use in medicine, agriculture, or environmental management.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102512"},"PeriodicalIF":5.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying microbial interactions: concepts, caveats, and applications 量化微生物相互作用:概念、注意事项和应用。
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-13 DOI: 10.1016/j.mib.2024.102511
Nittay Meroz , Tal Livny , Jonathan Friedman
{"title":"Quantifying microbial interactions: concepts, caveats, and applications","authors":"Nittay Meroz ,&nbsp;Tal Livny ,&nbsp;Jonathan Friedman","doi":"10.1016/j.mib.2024.102511","DOIUrl":"10.1016/j.mib.2024.102511","url":null,"abstract":"<div><p>Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members — a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for<em>.</em></p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102511"},"PeriodicalIF":5.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are microbes colimited by multiple resources? 微生物是否受到多种资源的限制?
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-10 DOI: 10.1016/j.mib.2024.102509
Noelle A Held , Michael Manhart
{"title":"Are microbes colimited by multiple resources?","authors":"Noelle A Held ,&nbsp;Michael Manhart","doi":"10.1016/j.mib.2024.102509","DOIUrl":"10.1016/j.mib.2024.102509","url":null,"abstract":"<div><p>Resource colimitation — the dependence of growth on multiple resources simultaneously — has become an important topic in microbiology due both to the development of systems approaches to cell physiology and ecology and to the relevance of colimitation to environmental science, biotechnology, and human health. Empirical tests of colimitation in microbes suggest that it may be common in nature. However, recent theoretical and empirical work has demonstrated the need for systematic measurements across resource conditions, in contrast to the factorial supplementation experiments used in most previous studies. The mechanistic causes of colimitation remain unclear in most cases and are an important challenge for future work, but we identify the alignment of resource consumption with the environment, interactions between resources, and biological and environmental heterogeneity as major factors. On the other hand, the consequences of colimitation are widespread for microbial physiology and ecology, especially the prediction and control of microbial growth, motivating continued consideration of this state in microbiology.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102509"},"PeriodicalIF":5.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000857/pdfft?md5=53d76f47d4a4ad9f4badcb17e9aee781&pid=1-s2.0-S1369527424000857-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial responses to fungal pathogens 上皮细胞对真菌病原体的反应。
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-10 DOI: 10.1016/j.mib.2024.102508
Kathleen A M Mills , Mariano A Aufiero , Tobias M Hohl
{"title":"Epithelial responses to fungal pathogens","authors":"Kathleen A M Mills ,&nbsp;Mariano A Aufiero ,&nbsp;Tobias M Hohl","doi":"10.1016/j.mib.2024.102508","DOIUrl":"10.1016/j.mib.2024.102508","url":null,"abstract":"<div><p>Epithelial cells orchestrate immune responses against fungal pathogens. This review highlights advances in integrating epithelial cells in immune responses against inhaled molds and dimorphic fungi, and against <em>Candida</em> species that colonize mucosal surfaces. In the lung, epithelial cells respond to interleukin-1 (IL-1) and interferon signaling to regulate effector cell influx and fungal killing. In the alimentary and vulvovaginal tracts, epithelial cells modulate fungal commensalism, invasive growth, and local immune tone, in part by responding to damage caused by candidalysin, a <em>C. albicans</em> peptide toxin, and through IL-17-dependent release of antimicrobial peptides that contribute to <em>Candida</em> colonization resistance. Understanding fungal–epithelial interactions in mammalian models of disease is critical to predict vulnerabilities and to identify opportunities for immune-based strategies to treat fungal infections.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102508"},"PeriodicalIF":5.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innate immune response to Candida auris 对白色念珠菌的先天免疫反应
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-03 DOI: 10.1016/j.mib.2024.102510
Ashley M Holt , Jeniel E Nett
{"title":"Innate immune response to Candida auris","authors":"Ashley M Holt ,&nbsp;Jeniel E Nett","doi":"10.1016/j.mib.2024.102510","DOIUrl":"10.1016/j.mib.2024.102510","url":null,"abstract":"<div><p><em>Candida auris</em>, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with <em>C. auris</em>, including investigations using animal models and <em>ex vivo</em> immune cells. We summarize innate immune studies comparing <em>C. auris</em> and the common fungal pathogen <em>Candida albicans</em>. We also discuss how structures of the <em>C. auris</em> cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102510"},"PeriodicalIF":5.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of the host microbiota on Candida albicans infection 宿主微生物群对白色念珠菌感染的影响
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-07-01 DOI: 10.1016/j.mib.2024.102507
Eve WL Chow , Li M Pang , Yue Wang
{"title":"The impact of the host microbiota on Candida albicans infection","authors":"Eve WL Chow ,&nbsp;Li M Pang ,&nbsp;Yue Wang","doi":"10.1016/j.mib.2024.102507","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102507","url":null,"abstract":"<div><p>The human microbiota is a complex microbial ecosystem populated by bacteria, fungi, viruses, protists, and archaea. The coexistence of fungi alongside with many billions of bacteria, especially in the gut, involves complex interactions, ranging from antagonistic to beneficial, between the members of these two kingdoms. Bacteria can impact fungi through various means, such as physical interactions, secretion of metabolites, or alteration of the host immune response, thereby affecting fungal growth and virulence. This review summarizes recent progress in this field, delving into the latest understandings of bacterial–fungal–immune interactions and innovative therapeutic approaches addressing the challenges of treating fungal infections associated with microbiota imbalances.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102507"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in regulation of homeostasis through chromatin modifications by airway commensals 气道共生动物通过染色质修饰调节体内平衡的研究进展。
IF 5.9 2区 生物学
Current opinion in microbiology Pub Date : 2024-06-26 DOI: 10.1016/j.mib.2024.102505
Michael G Connor, Melanie A Hamon
{"title":"Advances in regulation of homeostasis through chromatin modifications by airway commensals","authors":"Michael G Connor,&nbsp;Melanie A Hamon","doi":"10.1016/j.mib.2024.102505","DOIUrl":"10.1016/j.mib.2024.102505","url":null,"abstract":"<div><p>Commensal bacteria are residents of the human airway where they interact with both colonizing pathogens and host respiratory epithelial cells of this mucosal surface. It is here that commensals exert their influence through host signaling cascades, host transcriptional responses and host immunity, all of which are rooted in chromatin remodeling and histone modifications. Recent studies show that airway commensals impact host chromatin, but compared the what is known for gut commensals, the field remains in its infancy. The mechanisms by which airway commensals regulate respiratory health and homeostasis through chromatin modifications is of increasing interest, specifically since their displacement precedes the increased potential for respiratory disease. Herein we will discuss recent advances and intriguing avenues of future work aimed at deciphering how airway commensals protect and influence respiratory health.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102505"},"PeriodicalIF":5.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952742400081X/pdfft?md5=21f8e19529e4ee6eb61a86b91b898acb&pid=1-s2.0-S136952742400081X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信