Viviana Sanchez-Torres , Joy Kirigo , Thomas K. Wood
{"title":"Implications of lytic phage infections inducing persistence","authors":"Viviana Sanchez-Torres , Joy Kirigo , Thomas K. Wood","doi":"10.1016/j.mib.2024.102482","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102482","url":null,"abstract":"<div><p>Phage therapy holds much promise as an alternative to antibiotics for fighting infection. However, this approach is no panacea as recent results show that a small fraction of cells survives lytic phage infection due to both dormancy (i.e. formation of persister cells) and resistance (genetic change). In this brief review, we summarize evidence suggesting phages induce the persister state. Therefore, it is predicted that phage cocktails should be combined with antipersister compounds to eradicate bacterial infections.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102482"},"PeriodicalIF":5.4,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial synthase-dependent exopolysaccharide secretion: a focus on cellulose","authors":"Petya V. Krasteva","doi":"10.1016/j.mib.2024.102476","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102476","url":null,"abstract":"<div><p>Bacterial biofilms are a prevalent multicellular life form in which individual members can undergo significant functional differentiation and are typically embedded in a complex extracellular matrix of proteinaceous fimbriae, extracellular DNA, and exopolysaccharides (EPS). Bacteria have evolved at least four major mechanisms for EPS biosynthesis, of which the synthase-dependent systems for bacterial cellulose secretion (Bcs) represent not only key biofilm determinants in a wide array of environmental and host-associated microbes, but also an important model system for the studies of processive glycan polymerization, cyclic diguanylate (c-di-GMP)-dependent synthase regulation, and biotechnological polymer applications. The secreted cellulosic chains can be decorated with additional chemical groups or can pack with various degrees of crystallinity depending on dedicated enzymatic complexes and/or cytoskeletal scaffolds. Here, I review recent progress in our understanding of synthase-dependent EPS biogenesis with a focus on common and idiosyncratic molecular mechanisms across diverse cellulose secretion systems.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102476"},"PeriodicalIF":5.4,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000523/pdfft?md5=f855e430bf5684a61eb904490302374b&pid=1-s2.0-S1369527424000523-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140813284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time to switch gears: how long noncoding RNAs function as epigenetic regulators in Apicomplexan parasites","authors":"Vera Mitesser, Karina Simantov, Ron Dzikowski","doi":"10.1016/j.mib.2024.102484","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102484","url":null,"abstract":"<div><p>Long noncoding RNAs (lncRNA) are emerging as important regulators of gene expression in eukaryotes. In recent years, a large repertoire of lncRNA were discovered in <em>Apicomplexan</em> parasites and were implicated in several mechanisms of gene expression, including marking genes for activation, contributing to the formation of subnuclear compartments and organization, regulating the deposition of epigenetic modifications, influencing chromatin and chromosomal structure and manipulating host gene expression. Here, we aim to update recent knowledge on the role of lncRNAs as regulators in Apicomplexan parasites and highlight the possible molecular mechanisms by which they function. We hope that some of the hypotheses raised here will contribute to further investigation and lead to new mechanistic insight and better understanding of the role of lncRNA in parasite’s biology.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102484"},"PeriodicalIF":5.4,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140813285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PII-like signaling proteins: a new paradigm in orchestrating cellular homeostasis","authors":"Khaled A. Selim , Vikram Alva","doi":"10.1016/j.mib.2024.102453","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102453","url":null,"abstract":"<div><p>Members of the PII superfamily are versatile, multitasking signaling proteins ubiquitously found in all domains of life. They adeptly monitor and synchronize the cell's carbon, nitrogen, energy, redox, and diurnal states, primarily by binding interdependently to adenyl-nucleotides, including charged nucleotides (ATP, ADP, and AMP) and second messengers such as Cyclic adenosine monophosphate, Cyclic di-adenosine monophosphate, and S-adenosylmethionine–AMP (SAM-AMP). These proteins also undergo a variety of posttranslational modifications, such as phosphorylation, adenylation, uridylation, carboxylation, and disulfide bond formation, which further provide cues on the metabolic state of the cell. Serving as precise metabolic sensors, PII superfamily proteins transmit this information to diverse cellular targets, establishing dynamic regulatory assemblies that fine-tune cellular homeostasis. Recently discovered, PII-like proteins are emerging families of signaling proteins that, while related to canonical PII proteins, have evolved to fulfill a diverse range of cellular functions, many of which remain elusive. In this review, we focus on the evolution of PII-like proteins and summarize the molecular mechanisms governing the assembly dynamics of PII complexes, with a special emphasis on the PII-like protein SbtB.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102453"},"PeriodicalIF":5.4,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yorben Casters, Leonard E Bäcker, Kevin Broux, Abram Aertsen
{"title":"Phage transmission strategies: are phages farming their host?","authors":"Yorben Casters, Leonard E Bäcker, Kevin Broux, Abram Aertsen","doi":"10.1016/j.mib.2024.102481","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102481","url":null,"abstract":"<div><p>Extensive coevolution has led to utterly intricate interactions between phages and their bacterial hosts. While both the (short-term) intracellular molecular host-subversion mechanisms during a phage infection cycle and the (long-term) mutational arms race between phages and host cells have traditionally received a lot of attention, there has been an underestimating neglect of (mid-term) transmission strategies by which phages manage to cautiously spread throughout their host population. However, recent findings underscore that phages encode mechanisms to avoid host cell scarcity and promote coexistence with the host, giving the impression that some phages manage to ‘farm’ their host population to ensure access to host cells for lytic consumption. Given the tremendous impact of phages on bacterial ecology, charting and understanding the complexity of such transmission strategies is of key importance.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102481"},"PeriodicalIF":5.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiziano Vignolini, Justine E.C. Couble, Grégory R.G. Doré, Sebastian Baumgarten
{"title":"Transcript tinkering: RNA modifications in protozoan parasites","authors":"Tiziano Vignolini, Justine E.C. Couble, Grégory R.G. Doré, Sebastian Baumgarten","doi":"10.1016/j.mib.2024.102477","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102477","url":null,"abstract":"<div><p>Apicomplexan and trypanosomatid parasites have evolved a wide range of post-transcriptional processes that allow them to replicate, differentiate, and transmit within and among multiple different tissue, host, and vector environments. In this review, we highlight the recent advances that point toward the regulatory potential of RNA modifications in mediating these processes on the coding and noncoding transcriptome throughout the life cycle of protozoan parasites. We discuss the recent technical advancements enabling the study of the ‘epitranscriptome’ and how parasites evolved RNA modification-mediated mechanisms adapted to their unique lifestyles.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102477"},"PeriodicalIF":5.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000535/pdfft?md5=c281799d97f88f3ac2e2c2886b43c286&pid=1-s2.0-S1369527424000535-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cell wall synthesizing complexes in Mycobacteriales","authors":"Fabian M Meyer, Marc Bramkamp","doi":"10.1016/j.mib.2024.102478","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102478","url":null,"abstract":"<div><p>Members of the order <em>Mycobacteriales</em> are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, <em>Mycobacteriales</em> exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of <em>Mycobacteriales.</em>, focusing particularly on three model species: <em>Corynebacterium glutamicum</em>, <em>Mycobacterium smegmatis</em>, and <em>Mycobacterium tuberculosis</em>.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102478"},"PeriodicalIF":5.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000547/pdfft?md5=669f612932273395c977b4ed5d9c9807&pid=1-s2.0-S1369527424000547-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Renal implications of coronavirus disease 2019: insights into viral tropism and clinical outcomes","authors":"Valentin A Bärreiter , Toni L Meister","doi":"10.1016/j.mib.2024.102475","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102475","url":null,"abstract":"<div><p>In recent years, multiple coronaviruses have emerged, with the latest one, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing a global pandemic. Besides respiratory symptoms, some patients experienced extrapulmonary effects, such as cardiac damage or renal injury, indicating the broad tropism of SARS-CoV-2. The ability of the virus to effectively invade the renal cellular environment can eventually cause tissue-specific damage and disease. Indeed, patients with severe coronavirus disease 2019 exhibited a variety of symptoms such as acute proximal tubular injury, ischemic collapse, and severe acute tubular necrosis resulting in irreversible kidney failure. This review summarizes the current knowledge on how it is believed that SARS-CoV-2 influences the renal environment and induces kidney disease, as well as current therapy approaches.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102475"},"PeriodicalIF":5.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000511/pdfft?md5=f879234e8b89fb41d282c4ec00f72541&pid=1-s2.0-S1369527424000511-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection","authors":"Michelle Jagst , Lilli Pottkämper , André Gömer , Kalliopi Pitarokoili , Eike Steinmann","doi":"10.1016/j.mib.2024.102474","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102474","url":null,"abstract":"<div><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102474"},"PeriodicalIF":5.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952742400050X/pdfft?md5=3bfb870c627ec36f3aabb71ca1f1947e&pid=1-s2.0-S136952742400050X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases","authors":"Molly Elkins , Neha Jain , Çagla Tükel","doi":"10.1016/j.mib.2024.102473","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102473","url":null,"abstract":"<div><p>Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer’s and Parkinson’s disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases.</p><p>This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence:</p><ul><li><span>1.</span><span><p><em>Direct interaction with human amyloids:</em> Bacterial amyloids can directly interact with human amyloids, potentially accelerating the aggregation and deposition of amyloid fibrils associated with diseases such as Alzheimer’s and Parkinson’s disease. This direct interaction may contribute to the pathological progression of these conditions.</p></span></li></ul><p></p><ul><li><span>2.</span><span><p><em>Induction of inflammation:</em> Bacterial amyloids have the capacity to induce inflammatory responses within the host organism. Chronic inflammation is increasingly recognized as a contributor to neurodegenerative and autoimmune diseases. We will explore how the activation of inflammatory pathways and neuroinflammation by bacterial amyloids can exacerbate disease pathogenesis.</p></span></li></ul><ul><li><span>3.</span><span><p><em>Acting as a DNA carrier:</em> Bacterial amyloids may also serve as carriers of DNA, facilitating the activation of host DNA sensors. This mechanism can potentially lead to alterations in the host’s immune response and also contribute to the development of autoantibodies.</p></span></li></ul><p>By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102473"},"PeriodicalIF":5.4,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000493/pdfft?md5=2501ce70501d270568f5549ba94ac467&pid=1-s2.0-S1369527424000493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}