Current opinion in microbiology最新文献

筛选
英文 中文
Dissecting cell heterogeneities in bacterial biofilms and their implications for antibiotic tolerance 剖析细菌生物膜中的细胞异质性及其对抗生素耐受性的影响
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-28 DOI: 10.1016/j.mib.2024.102450
Mayra C Obando, Diego O Serra
{"title":"Dissecting cell heterogeneities in bacterial biofilms and their implications for antibiotic tolerance","authors":"Mayra C Obando,&nbsp;Diego O Serra","doi":"10.1016/j.mib.2024.102450","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102450","url":null,"abstract":"<div><p>Bacterial biofilms consist of large, self-formed aggregates where resident bacteria can exhibit very different physiological states and phenotypes. This heterogeneity of cell types is crucial for many structural and functional emergent properties of biofilms. Consequently, it becomes essential to understand what drives cells to differentiate and how they achieve it within the three-dimensional landscape of the biofilms. Here, we discuss recent advances in comprehending two forms of cell heterogeneity that, while recognized to coexist within biofilms, have proven challenging to distinguish. These two forms include cell heterogeneity arising as a consequence of bacteria physiologically responding to resource gradients formed across the biofilms and cell-to-cell phenotypic heterogeneity, which emerges locally within biofilm subzones among neighboring bacteria due to stochastic variations in gene expression. We describe the defining features and concepts related to both forms of cell heterogeneity and discuss their implications, with a particular focus on antibiotic tolerance.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102450"},"PeriodicalIF":5.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond resistance: antifungal heteroresistance and antifungal tolerance in fungal pathogens 超越抗药性:真菌病原体的抗真菌异抗性和抗真菌耐受性
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-23 DOI: 10.1016/j.mib.2024.102439
Feng Yang , Judith Berman
{"title":"Beyond resistance: antifungal heteroresistance and antifungal tolerance in fungal pathogens","authors":"Feng Yang ,&nbsp;Judith Berman","doi":"10.1016/j.mib.2024.102439","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102439","url":null,"abstract":"<div><p>Fungal infections are increasing globally, causing alarmingly high mortality and economic burden. In addition to antifungal resistance, other more subtle drug responses appear to increase the likelihood of treatment failures. These responses include heteroresistance and tolerance, terms that are more well-defined for antibacterial drugs, but are also evident in pathogenic fungi. Here, we compare these antifungal responses with similarly named antibacterial responses, and we review recent advances in how we understand the routes by which antifungal heteroresistance and tolerance emerge.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102439"},"PeriodicalIF":5.4,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139942575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac damage and tropism of severe acute respiratory syndrome coronavirus 2 严重急性呼吸系统综合征冠状病毒 2 的心脏损伤和趋向性
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-23 DOI: 10.1016/j.mib.2024.102437
Melina Tangos , Muhammad Jarkas , Ibrahim Akin , Ibrahim El-Battrawy , Nazha Hamdani
{"title":"Cardiac damage and tropism of severe acute respiratory syndrome coronavirus 2","authors":"Melina Tangos ,&nbsp;Muhammad Jarkas ,&nbsp;Ibrahim Akin ,&nbsp;Ibrahim El-Battrawy ,&nbsp;Nazha Hamdani","doi":"10.1016/j.mib.2024.102437","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102437","url":null,"abstract":"<div><p>Until now, the World Health Organization registered over 771 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection worldwide, of which 6.97 million resulted in death. Virus-related cardiovascular events and pre-existing heart problems have been identified as major contributing factors to global infection-related morbidity and mortality, emphasizing the necessity for risk assessment and future prevention.</p><p>In this review, we highlight cardiac manifestations that might arise from an infection with SARS-CoV-2 and provide an overview of known comorbidities that worsen the outcome. Additionally, we aim to summarize the therapeutic strategies proposed to reverse virus-associated myocardial damage, which will be further highlighted in this review, with an outlook to successful recovery and prevention.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102437"},"PeriodicalIF":5.4,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000134/pdfft?md5=96d3a3b7dbdde7e13b7476d30c9438fb&pid=1-s2.0-S1369527424000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis 具有多种宿主的通用病原体的共同进化:两栖动物糜烂杆菌的案例。
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-22 DOI: 10.1016/j.mib.2024.102435
Tamilie Carvalho , Anat M Belasen , L Felipe Toledo , Timothy Y James
{"title":"Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis","authors":"Tamilie Carvalho ,&nbsp;Anat M Belasen ,&nbsp;L Felipe Toledo ,&nbsp;Timothy Y James","doi":"10.1016/j.mib.2024.102435","DOIUrl":"10.1016/j.mib.2024.102435","url":null,"abstract":"<div><p>Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host–pathogen coevolution remains to be widely explored. <em>Batrachochytrium dendrobatidis</em> (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host–pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102435"},"PeriodicalIF":5.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: A critical crossroad in microbiome research: Where do we go? 编辑综述:微生物组研究的关键十字路口:我们该何去何从?
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-20 DOI: 10.1016/j.mib.2024.102438
Maria Carmen Collado, Christopher J Stewart
{"title":"Editorial overview: A critical crossroad in microbiome research: Where do we go?","authors":"Maria Carmen Collado,&nbsp;Christopher J Stewart","doi":"10.1016/j.mib.2024.102438","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102438","url":null,"abstract":"","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102438"},"PeriodicalIF":5.4,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139908079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-layered genome defences in bacteria 细菌的多层基因组防御系统
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-17 DOI: 10.1016/j.mib.2024.102436
Aleksei Agapov , Kate S Baker , Paritosh Bedekar , Rama P Bhatia , Tim R Blower , Michael A Brockhurst , Cooper Brown , Charlotte E Chong , Joanne L Fothergill , Shirley Graham , James PJ Hall , Alice Maestri , Stuart McQuarrie , Anna Olina , Stefano Pagliara , Mario Recker , Anna Richmond , Steven J Shaw , Mark D Szczelkun , Tiffany B Taylor , Rosanna Wright
{"title":"Multi-layered genome defences in bacteria","authors":"Aleksei Agapov ,&nbsp;Kate S Baker ,&nbsp;Paritosh Bedekar ,&nbsp;Rama P Bhatia ,&nbsp;Tim R Blower ,&nbsp;Michael A Brockhurst ,&nbsp;Cooper Brown ,&nbsp;Charlotte E Chong ,&nbsp;Joanne L Fothergill ,&nbsp;Shirley Graham ,&nbsp;James PJ Hall ,&nbsp;Alice Maestri ,&nbsp;Stuart McQuarrie ,&nbsp;Anna Olina ,&nbsp;Stefano Pagliara ,&nbsp;Mario Recker ,&nbsp;Anna Richmond ,&nbsp;Steven J Shaw ,&nbsp;Mark D Szczelkun ,&nbsp;Tiffany B Taylor ,&nbsp;Rosanna Wright","doi":"10.1016/j.mib.2024.102436","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102436","url":null,"abstract":"<div><p>Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR–Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Notably, diverse DSs often coexist within the same genome, and some co-occur at frequencies significantly higher than would be expected by chance, implying potential synergistic interactions. Recent studies have provided evidence of defence mechanisms that enhance or complement one another. Here, we review the interactions between DSs at the mechanistic, regulatory, ecological and evolutionary levels.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102436"},"PeriodicalIF":5.4,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000122/pdfft?md5=ba1346ecc34fb925746c6a078a1edb6a&pid=1-s2.0-S1369527424000122-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139748792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phage susceptibility determinants of the opportunistic pathogen Staphylococcus epidermidis 机会性病原体表皮葡萄球菌的噬菌体敏感性决定因素
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-16 DOI: 10.1016/j.mib.2024.102434
Christian Beck , Janes Krusche , Ahmed M.A. Elsherbini , Xin Du , Andreas Peschel
{"title":"Phage susceptibility determinants of the opportunistic pathogen Staphylococcus epidermidis","authors":"Christian Beck ,&nbsp;Janes Krusche ,&nbsp;Ahmed M.A. Elsherbini ,&nbsp;Xin Du ,&nbsp;Andreas Peschel","doi":"10.1016/j.mib.2024.102434","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102434","url":null,"abstract":"<div><p><em>Staphylococcus epidermidis</em> is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory <em>S. epidermidis</em> infections. Lytic phages on the other hand can be interesting candidates for new anti-<em>S. epidermidis</em> phage therapies. Despite the importance of phages, we are only beginning to unravel <em>S. epidermidis</em> phage interactions. Recent studies shed new light on <em>S. epidermidis</em> phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for <em>S. epidermidis</em> susceptibility to different phage groups.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102434"},"PeriodicalIF":5.4,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000109/pdfft?md5=1377282fa74065348f27fb05336d3e13&pid=1-s2.0-S1369527424000109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gram-negative endolysins: overcoming the outer membrane obstacle 革兰氏阴性内溶素:克服外膜障碍
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-12 DOI: 10.1016/j.mib.2024.102433
Hazel M Sisson , Simon A Jackson , Robert D Fagerlund , Suzanne L Warring , Peter C Fineran
{"title":"Gram-negative endolysins: overcoming the outer membrane obstacle","authors":"Hazel M Sisson ,&nbsp;Simon A Jackson ,&nbsp;Robert D Fagerlund ,&nbsp;Suzanne L Warring ,&nbsp;Peter C Fineran","doi":"10.1016/j.mib.2024.102433","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102433","url":null,"abstract":"<div><p>Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102433"},"PeriodicalIF":5.4,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000092/pdfft?md5=4e8c2e78ff4e2f253e1734002469e1e4&pid=1-s2.0-S1369527424000092-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139719166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixotrophy in cyanobacteria 蓝藻的混合营养
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-06 DOI: 10.1016/j.mib.2024.102432
María del Carmen Muñoz-Marín, Antonio López-Lozano, José Ángel Moreno-Cabezuelo, Jesús Díez, José Manuel García-Fernández
{"title":"Mixotrophy in cyanobacteria","authors":"María del Carmen Muñoz-Marín,&nbsp;Antonio López-Lozano,&nbsp;José Ángel Moreno-Cabezuelo,&nbsp;Jesús Díez,&nbsp;José Manuel García-Fernández","doi":"10.1016/j.mib.2024.102432","DOIUrl":"https://doi.org/10.1016/j.mib.2024.102432","url":null,"abstract":"<div><p>Cyanobacteria evolved the oxygenic photosynthesis to generate organic matter from CO<sub>2</sub> and sunlight, and they were responsible for the production of oxygen in the Earth's atmosphere. This made them a model for photosynthetic organisms, since they are easier to study than higher plants. Early studies suggested that only a minority among cyanobacteria might assimilate organic compounds, being considered mostly autotrophic for decades. However, compelling evidence from marine and freshwater cyanobacteria, including toxic strains, in the laboratory and in the field, has been obtained in the last decades: by using physiological and omics approaches, mixotrophy has been found to be a more widespread feature than initially believed. Furthermore, dominant clades of marine cyanobacteria can take up organic compounds, and mixotrophy is critical for their survival in deep waters with very low light. Hence, mixotrophy seems to be an essential trait in the metabolism of most cyanobacteria, which can be exploited for biotechnological purposes.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102432"},"PeriodicalIF":5.4,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000080/pdfft?md5=0eecd413be9b378d8959c16ecafa0844&pid=1-s2.0-S1369527424000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum 渴望控制:恶性疟原虫染色质的代谢物信号传递
IF 5.4 2区 生物学
Current opinion in microbiology Pub Date : 2024-02-02 DOI: 10.1016/j.mib.2024.102430
Ruth Lappalainen, Manish Kumar, Manoj T Duraisingh
{"title":"Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum","authors":"Ruth Lappalainen,&nbsp;Manish Kumar,&nbsp;Manoj T Duraisingh","doi":"10.1016/j.mib.2024.102430","DOIUrl":"10.1016/j.mib.2024.102430","url":null,"abstract":"<div><p><span>The human malaria parasite </span><span><em>Plasmodium falciparum</em></span><span><span><span> undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting </span>red blood cells<span> are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the </span></span>histone code resulting in changes to transcriptional programmes in malaria parasites.</span></p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102430"},"PeriodicalIF":5.4,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139669757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信