量化微生物相互作用:概念、注意事项和应用。

IF 5.9 2区 生物学 Q1 MICROBIOLOGY
Nittay Meroz , Tal Livny , Jonathan Friedman
{"title":"量化微生物相互作用:概念、注意事项和应用。","authors":"Nittay Meroz ,&nbsp;Tal Livny ,&nbsp;Jonathan Friedman","doi":"10.1016/j.mib.2024.102511","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members — a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for<em>.</em></p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102511"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying microbial interactions: concepts, caveats, and applications\",\"authors\":\"Nittay Meroz ,&nbsp;Tal Livny ,&nbsp;Jonathan Friedman\",\"doi\":\"10.1016/j.mib.2024.102511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members — a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for<em>.</em></p></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"80 \",\"pages\":\"Article 102511\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527424000870\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424000870","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物群落是地球上每个生态系统的基础,在生物技术应用方面具有巨大潜力。然而,它们的复杂性阻碍了我们研究和了解它们的能力。解决这种复杂性的一个常见策略是将群落抽象为其成员之间的相互作用网络--一种现象学描述,可以捕捉到支撑这些关系的各种化学和物理机制的整体效果。事实证明,这种方法在微生物生态学的许多应用中都很有用,包括预测群落动态和稳定性以及了解群落的组装和进化。不过,在量化和解释相互作用时需要小心谨慎。在此,我们澄清了相互作用的概念,并讨论了相互作用的测量在什么情况下是有用的,尽管它们与环境有关。此外,我们还对量化相互作用的不同方法进行了分类,并强调了每种方法最适合的研究目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying microbial interactions: concepts, caveats, and applications

Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members — a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信