Leila Ben Farhat, Hiba Selmi, Violetta Toth, Amanda Hoarau, Agnes Suli, Kata Sara Labas, Abidi Ferid, Edit Mikó
{"title":"A2 Milk: The Impact of Genetic Variation in Milk Protein on Human Health.","authors":"Leila Ben Farhat, Hiba Selmi, Violetta Toth, Amanda Hoarau, Agnes Suli, Kata Sara Labas, Abidi Ferid, Edit Mikó","doi":"10.2174/0113892037366987250401183000","DOIUrl":"https://doi.org/10.2174/0113892037366987250401183000","url":null,"abstract":"<p><p>Recently, a new type of cow's milk has been commercialized in the markets, called A2 milk. It is derived from a specific allelic composition on chromosome 6. The only difference between A1 and A2 milk results from the polymorphism at the 67 amino acid chain. In this position, A2 milk has a proline amino acid, while A1 milk has a histidine amino acid. Proteins are one of the most important components of milk, especially casein, and have received significant attention as they are the source of bioactive opioid peptides called beta-casomorphin-7. Peptides are released through enzymatic digestion of casein and whey proteins. More precisely, this bioactive peptide is produced by sequential gastrointestinal digestion of bovine A1 variants proteins, while this phenomenon is not present in variant A2. Studies have reported that A1 milk can be harmful to health not only for adults but also for infants and that β-casein A2 becomes a safer choice following the relationship between disease risk and consumption of the beta-casomorphin-7 peptide. Indeed, epidemiological studies suggest that the released beta-casomorphin-7 peptide is a risk factor for the development of diseases in humans, but this has not yet been validated by other studies. In contrast, A2 milk has been suggested as an appropriate substitute for A1 milk since populations consuming milk containing high levels of the A2 beta-casein variant have lower rates of diseases, such as diabetes, coronary heart disease, autism, and schizophrenia.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143985030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Messenger RNA Nanomedicine: Innovations and Future Directions.","authors":"Jyotsana Dwivedi, Pranay Wal, Subbulakshmi Ganesan, Ashish Sharma, Pawan Sharma, Syeda Wajida Kazmi, Reena Gupta","doi":"10.2174/0113892037357900250401020207","DOIUrl":"https://doi.org/10.2174/0113892037357900250401020207","url":null,"abstract":"<p><p>With its high potential, mRNA nanomedicine has become one of the transformative frontiers of modern therapeutic strategies for treating and preventing a wide array of diseases. This review article covers recent developments in mRNA nanomedicine and its prospects in terms of innovations in drug delivery systems, stability improvements, and targeted therapeutic applications. The versatility of mRNA means that almost any protein can potentially be encoded into it, making it a powerhouse for vaccines, gene editing, and protein replacement therapies. Recent breakthroughs in nanoparticle technology have significantly enhanced mRNA molecules' delivery efficiency and stability, surmounting previous barriers concerning rapid degradation and immune system activation. It has been developed Innovations such as LNPs, polymer-based carriers, and hybrid nanocarriers have been central to the success of targeted delivery and the sustained release of mRNA. This review further underlines the potential of mRNA nanomedicine for oncological, infectious, and genetic diseases by highlighting ongoing clinical trials, emerging therapeutic paradigms, and future directions that lay much emphasis on delivery platform optimization, mRNA stability, and broadening the scope of mRNA nanomedicine therapy. With the power of emerging technologies and solving present challenges, mRNA nanomedicine has a vast potential to revolutionize the future landscape of personalized medicine and targeted therapies.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143994027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Firuza Begum, Aman Kumar Mahto, Shalini Kumari, Rikeshwer Prasad Dewangan
{"title":"In-Situ Synthesis of Silver Nanoparticle within Self-Assembling Ultrashort Peptide Hydrogel as Antibacterial with Wound Healing Properties.","authors":"Firuza Begum, Aman Kumar Mahto, Shalini Kumari, Rikeshwer Prasad Dewangan","doi":"10.2174/0113892037367553250327084808","DOIUrl":"https://doi.org/10.2174/0113892037367553250327084808","url":null,"abstract":"<p><strong>Introduction/objectives: </strong>Silver nanoparticles [AgNPs] are promising antimicrobial agents, but their synthesis often involves toxic reducing agents. To address this, we developed a green synthesis methodology employing an in-situ approach for synthesizing AgNPs within self- -assembled ultrashort peptide hydrogels through photochemical synthesis, eliminating the need for toxic chemicals.</p><p><strong>Methods: </strong>A novel tetrapeptide was designed and synthesized to form hydrogels in aqueous solutions. AgNPs were incorporated into the hydrogel via in-situ photochemical synthesis using sunlight. The hydrogel and AgNPs were characterized through spectroscopic and microscopic techniques. The antibacterial efficacy of the AgNP-loaded hydrogel was assessed against gram-positive and gram-negative bacteria, and its wound-healing potential in mammalian cell lines was evaluated.</p><p><strong>Results: </strong>Among the peptides synthesized, PHG-2 formed a hydrogel at a 1% w/v concentration in aqueous solution. Characterization using the gel inversion assay, circular dichroism [CD] spectroscopy, and transmission electron microscopy [TEM] revealed uniform nanofibril self-assembly. UV spectroscopy and TEM confirmed the formation of AgNPs within the hydrogel. While the peptide hydrogel exhibited moderate antibacterial activity alone, the AgNP-loaded hydrogel demonstrated synergistic antibacterial effects against methicillin-resistant Staphylococcus aureus [MRSA] and Escherichia coli. A docking study of all the synthesized peptides was performed against FmtA [an enzyme for cell wall synthesis of MRSA] and results were correlated with the obtained docking score. The silver-loaded peptide hydrogel showed a twofold increase in antibacterial activity against MRSA compared to silver nitrate solutions. The hydrogel significantly promoted wound healing in HEK-293T and MCF-7 cells compared to the control.</p><p><strong>Conclusions: </strong>This study introduces a novel ultrashort tetrapeptide sequence for developing antibacterial agents that are effective against infected wounds while supporting wound healing. Utilizing in-situ photochemical synthesis, the green synthesis approach provides an environmentally friendly and sustainable alternative to conventional methods.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143984635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumel Ashique, Radheshyam Pal, Anas Islam, Himanshu Sharma, Subhajit Mandal, Sanjesh Kumar, Mansi Singh, Samy Selim, Soad K Al Jaouni, Amisha Raikar, Lavanya Lakshminarayana, Bhavinee Sharma, Rashmi Pathak
{"title":"Decoding the Molecular Mechanisms of miRNAs: Protein Interactions in Schizophrenia Pathogenesis.","authors":"Sumel Ashique, Radheshyam Pal, Anas Islam, Himanshu Sharma, Subhajit Mandal, Sanjesh Kumar, Mansi Singh, Samy Selim, Soad K Al Jaouni, Amisha Raikar, Lavanya Lakshminarayana, Bhavinee Sharma, Rashmi Pathak","doi":"10.2174/0113892037362309250319035758","DOIUrl":"https://doi.org/10.2174/0113892037362309250319035758","url":null,"abstract":"<p><p>Schizophrenia is now diagnosed mostly based on symptoms and physical signs rather than the patient's pathological and physiological markers. While oncologists once felt satisfied when their patients experienced a long remission, today, they are leading research into innovative treatments with molecularly targeted drugs, as well as strategies to enhance diagnostic accuracy and alleviate symptoms as the disease advances.Because biomarkers reflect an organism's physiological, physical, and biochemical state, they are very beneficial and have a wide range of real-- world uses. The identification of blood biomarkers may open up new avenues for studying schizophrenia. MicroRNAs (miRNAs) may serve as diagnostic indicators for schizophrenia as their abnormal expression has recently been linked to the disease's pathophysiology. The precise etiological process of schizophrenia remains largely unknown despite the general agreement that developmental and genetic factors play a critical role in the pathophysiology of the disorder. miRNAs have gained recognition as an essential post-transcriptional regulator in the regulation of gene expression in recent decades. The importance of miRNAs for brain development and neuroplasticity is well established.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jithu Jerin James, K V Sandhya, Parasuraman Pavadai, K N Sridhar, S Sudarson, B V Basavaraj, Bharath Srinivasan
{"title":"Exploring Placental Protein-Target Protein Interactions: In Silico and In Vitro Approaches for Osteoarthritis Therapy.","authors":"Jithu Jerin James, K V Sandhya, Parasuraman Pavadai, K N Sridhar, S Sudarson, B V Basavaraj, Bharath Srinivasan","doi":"10.2174/0113892037366889250322043039","DOIUrl":"https://doi.org/10.2174/0113892037366889250322043039","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is a persistent joint condition marked by gradual softening and breakdown of articular cartilage. Current research in OA treatment explores biologics that target proinflammatory cytokines and proteases, as well as promote chondrocyte regeneration and cartilage repair. Human placental tissues, abundant in anti-catabolic factors, can mitigate cartilage degradation by inhibiting protease expression and maintaining cartilage homeostasis in the presence of anabolic factors.</p><p><strong>Objective: </strong>This investigation examined placental protein interactions with proteases and OA target proteins through protein-protein docking and dynamic studies.</p><p><strong>Method: </strong>The NCBI conserved domain database was utilized to predict functional protein domains. Protein sequence motifs were identified using literature, the MEME suite tool, and the My- Hits database. The Expasy-ProtParam online tool was employed to analyze protein physical parameters. ClusPro Advanced Options was used to dock binding site residues of selected placental proteins against specific OA target proteins, while PDBsum and Biovia Discovery Studio were used to visualize and examine molecular interactions. A 100 ns molecular dynamics (MD) study was conducted using DESMOND software.</p><p><strong>Result: </strong>Protein-protein docking revealed strong interactions of placental proteins with docking scores ranging from -1700 to -2450.3 against proteases and -900 to -1400 against specific target proteins. PDBsum analysis of placental protein-target protein docked complexes revealed residue interactions, hydrogen bonds, and non-bonded contacts. Molecular dynamics simulations further confirmed the stability of these complexes, indicating favorable protein-protein interactions (PPIs). The anti-inflammatory activity of human placental tissue against lipopolysaccharide-induced macrophages was investigated using flow cytometry.</p><p><strong>Conclusion: </strong>These results provide a foundation for future experimental studies to confirm the predicted interactions and to explore their potential therapeutic applications in OA treatment. Additionally, patients with OA and other arthritic conditions could benefit from the biologics chondroprotective biofactors, which serve as a promising alternative to conventional knee replacement surgery.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the Role of DPYS: A New Prognostic Biomarker in Sarcoma.","authors":"Guizhen Lyu, Dongbing Li","doi":"10.2174/0113892037362065250227064739","DOIUrl":"https://doi.org/10.2174/0113892037362065250227064739","url":null,"abstract":"<p><strong>Background: </strong>Dihydropyrimidinase (DPYS), a pivotal enzyme in the pyrimidine synthesis pathway, has been increasingly studied for its potential role in cancer therapy. While its presence has been noted in various cancers, its specific impact on sarcoma (SARC) still needs to be fully understood.</p><p><strong>Objective: </strong>This study sought to explore the correlation between DPYS expression and SARC, utilizing data from The Cancer Genome Atlas (TCGA), bioinformatics tools, and experimental validation.</p><p><strong>Methods: </strong>The study employed statistical analysis and logistic regression to assess the link between DPYS expression levels and clinical features in SARC patients. Survival analysis was conducted using the Kaplan-Meier method and Cox regression, evaluating the prognostic significance of DPYS expression. Gene set enrichment analysis and immuno-infiltration analysis were conducted to uncover the potential regulatory mechanisms of the DPYS gene. We validated the expression of DPYS using GSE17674. Quantitative reverse transcription PCR was utilized to measure DPYS expression levels in SARC cell lines.</p><p><strong>Results: </strong>The study found that reduced DPYS expression in SARC correlated with therapeutic response (P = 0.011), histological subtype (P = 0.003), and the presence of residual tumor (P = 0.043). Reduced DPYS expression was a predictor of inferior Overall Survival (OS), with a Hazard Ratio (HR) of 0.56 and a 95% Confidence Interval (CI) of 0.37-0.84 (P = 0.005), as well as Disease-Specific Survival (DSS), with an HR of 0.64 and a 95% CI of 0.41-1.00 (P = 0.048). DPYS expression was also identified as an independent factor for OS in SARC (HR: 0.335; 95% CI: 0.169-0.664; P = 0.002). The gene was associated with various pathways, including GPCR ligand binding, signaling by interleukins, G alpha (i) signaling events, Class A/1 Rhodopsin-like receptors, cytokine-cytokine receptor interaction, and platelet activation. DPYS expression also showed a correlation with certain immune cell infiltrates and was found to be significantly downregulated in SARC cell lines.</p><p><strong>Conclusion: </strong>DPYS may serve as a potential prognostic biomarker and therapeutic target for SARC.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huang Xudong, Li Qi, Ma Wenlong, Li Jinkun, Xu Xiaodong, Zhang Chengyin, Zhang Jiahe, Yuan Yifeng, Shi Xiaolin, Zeng Lingfeng, Wang Weiguo
{"title":"Network Pharmacology and Experiments to Verify the Effect and Potential Mechanism of Baicalein on Osteoporosis.","authors":"Huang Xudong, Li Qi, Ma Wenlong, Li Jinkun, Xu Xiaodong, Zhang Chengyin, Zhang Jiahe, Yuan Yifeng, Shi Xiaolin, Zeng Lingfeng, Wang Weiguo","doi":"10.2174/0113892037353878250212053910","DOIUrl":"https://doi.org/10.2174/0113892037353878250212053910","url":null,"abstract":"<p><strong>Background: </strong>Baicalein (BN), a potent flavonoid derived from scutellaria scutellaria, exhibits an array of noteworthy attributes, such as anti-inflammatory, antibacterial, and antipyretic properties. Furthermore, its potential in treating osteoporosis has been highlighted. Nonetheless, the exact modes of action responsible for its therapeutic effects remain obscure. Hence, this study aims to elucidate the improvement effect of BN on OVX rats and explore its potential mechanism of action in treating osteoporosis through a comprehensive strategy that integrates network pharmacology and rigorous animal experiments.</p><p><strong>Methods: </strong>The potential protein targets and OP disease targets in BN are analyzed using the protein database. The protein interaction diagram is constructed by Cytoscape3.7.2 software, and binding energy is used to evaluate the binding activity between BN and core targets, and some key genes are verified by protein experiments.</p><p><strong>Results: </strong>Topology analysis and prediction reveal that osteoporosis (OP) is associated with more than ten core target proteins. Notably, NAD-dependent deacetylase sirtuin 1 (SIRT1), Androgen Receptor (AR), Estrogen Receptor beta (ESR1), and Cyclooxygenase-2 (PTGS2) emerge as pivotal proteins in the treatment of osteoporosis with BN. The biological process underlying BN treatment of osteoporosis primarily involves the regulation of sex hormone levels, autophagy, inflammatory response, and reactive oxygen metabolism. Moreover, the signaling pathways involved are predominantly the PI3K-Akt pathway, AMPK pathway, and estrogen signaling pathway. Subsequent animal experiments corroborate these findings by demonstrating that BN significantly enhances the expression levels of SIRT1, AR, and ESR1 in tissues, while concurrently reducing the protein expression of PTGS2. This multifaceted approach ultimately achieves the desired therapeutic outcome of osteoporosis treatment.</p><p><strong>Conclusion: </strong>In summary, this study has validated the therapeutic effect of BN on OP and analyzed multiple potential therapeutic targets of BN for osteoporosis, which provides new ideas for further clinical treatment and experimental research of BN.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xian-Quan Zhang, Guang-Hui Zhou, Zhuo-Xu Gu, Ling-Feng Zeng, Ming-Hui Luo
{"title":"Effectiveness and Current Status of Icariin in the Treatment of Rotator Cuff Injury Associated with Osteoporosis.","authors":"Xian-Quan Zhang, Guang-Hui Zhou, Zhuo-Xu Gu, Ling-Feng Zeng, Ming-Hui Luo","doi":"10.2174/0113892037350167250121112656","DOIUrl":"https://doi.org/10.2174/0113892037350167250121112656","url":null,"abstract":"<p><p>Rotator cuff injury is a disease in which the muscle and tendon that constitute the rotator cuff are torn causing shoulder pain and limited function. Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass, destruction of bone microstructure, decreased bone strength, and increased bone fragility. Both are common musculoskeletal diseases that occur in middle-aged and elderly people, and their prevalence gradually increases with age. Clinically, rotator cuff injury and OP comorbidity are very common, especially in terms of bone metabolism. In recent years, plant natural products have gradually become a research hotspot. Icariin (ICA) is one of the naturally present active ingredients derived from the Berberaceae herb Epimedium. It has various pharmacological effects, such as anti-inflammatory, antioxidant, and anti- tumor properties, and is involved in the regulation of bone metabolism, which can play multiple therapeutic effects through a variety of proteins, receptors, and signaling pathways. Therefore, ICA, as a potential natural drug, is being gradually applied in the treatment of rotator cuff injury combined with OP, which has achieved great clinical efficacy. This study mainly discusses the pharmacological action and action mechanism of ICA in order to explore the potential of ICA to prevent and treat rotator cuff injury combined with OP and provide a theoretical basis for the subsequent clinical application of ICA.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibitors of Type II NADH Dehydrogenase Enzyme: A Review.","authors":"Guangzhou Sun, Quanshan Shi, Yuting Song, Lingkai Tang, Siyao Li, Tiantian Yang, Kaixuan Hu, Liang Ma, Xiaodong Shi, Jianping Hu","doi":"10.2174/0113892037350396250213115109","DOIUrl":"https://doi.org/10.2174/0113892037350396250213115109","url":null,"abstract":"<p><p>Mitochondria are organelles in eukaryotic organisms with an electron transport chain consisting of four complexes (i.e., CI, CII, CIII, and CIV) on the inner membrane, which have functions such as providing energy, electron transport, and generating proton gradients. NADH dehydrogenase type 2 (NDH-2), widely found in bacterial, plant, fungal and protist mitochondria, is a nonproton-pumping single-subunit enzyme bound to the surface of the inner mitochondrial membrane that partially replaces NDH-1. NDH-2 has a crucial role in the energy metabolism of pathogenic microorganisms, and the lack of NDH-2 or its homologs in humans makes NDH-2 an essential target for the development of antimicrobial drugs. There is a wide variety of pathogenic microorganisms that invade the human body and cause diseases; therefore, more and more inhibitors targeting NDH-2 of different pathogenic microorganisms continue to be reported. This paper first reviews the structure and function of NDH-2 and summarizes the classification of compounds targeting NDH-2. Given the relative paucity of inhibition mechanisms for NDH-2, which has greatly hindered the development of targeted drugs, the article concludes with a summary of two possible mechanisms in action: allosteric inhibition and competitive inhibition. This review will provide theoretical support for the subsequent molecular design and modification of drugs targeting the pathogenic microorganism NDH-2.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justyna Sawicka, Piotr Bollin, Anna Sylla, Mirosława Panasiuk, Michalina Wilkowska, Lidia Ciołek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Całka-Kuc, Adam Liwo, Piotr Hańczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwia Rodziewicz-Motowidło
{"title":"Design and Characterization of Antibacterial Peptide Nanofibrils as Components of Composites for Biomaterial Applications.","authors":"Justyna Sawicka, Piotr Bollin, Anna Sylla, Mirosława Panasiuk, Michalina Wilkowska, Lidia Ciołek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Całka-Kuc, Adam Liwo, Piotr Hańczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwia Rodziewicz-Motowidło","doi":"10.2174/0113892037353453241219185311","DOIUrl":"https://doi.org/10.2174/0113892037353453241219185311","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to design and synthesize the ug46 peptide, incorporate its fibrils into composite materials, and evaluate its structural and antimicrobial properties. Another objective was to utilize spectroscopy and molecular simulation, enhanced by Machine Vision methods, to monitor the aggregation process of the ug46 peptide and assess its potential as a scaffold for an antimicrobial peptide.</p><p><strong>Method: </strong>The structural analysis of the ug46 peptide reveals its dynamic conformational changes. Initially, the peptide exhibits a disordered structure with minimal α-helix content, but as incubation progresses, it aggregates into fibrils rich in β-sheets. This transformation was validated by CD and ThT assays, which showed decreased molar ellipticity and an increase in ThT fluorescence.</p><p><strong>Results: </strong>Laser-induced fluorescence and molecular dynamics simulations further revealed the transition from a compact native state to extended \"worm-like\" filament structures, influenced by peptide concentration and temperature. TEM and AFM confirmed these changes, showing the evolution of protofibrils into mature fibrils with characteristic twists. When incorporated into chitosan- bioglass composites, these fibrils significantly enhanced antimicrobial activity against pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa.</p><p><strong>Conclusion: </strong>Overall, ug46 peptide fibrils show promise as a multifunctional scaffold with structural and antimicrobial benefits in composite biomaterials.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}