{"title":"Coupling of SARS-CoV-2 to Amyloid Fibrils and Liquid-Liquid Phase Separation.","authors":"Hoang Linh Nguyen, Mai Suan Li","doi":"10.2174/0113892037354482250414045355","DOIUrl":"https://doi.org/10.2174/0113892037354482250414045355","url":null,"abstract":"<p><p>COVID-19 is a respiratory disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), but because the receptor protein of this virus can appear not only in the lungs and throat but also in various parts of the host's body, it causes different diseases. Recent observations have suggested that SARS-CoV-2 damages the central nervous system of patients in a manner similar to amyloid-associated neurodegenerative diseases such as Alzheimer's and Parkinson's. Neurodegenerative diseases are believed to be associated with the self-assembly of amyloid proteins and peptides. On the other hand, whole proteins or parts of them encoded by SARS-CoV-2 can form amyloid fibrils, which may play an important role in amyloid-related diseases. Motivated by this evidence, this mini-review discusses experimental and computational studies of SARS-CoV-2 proteins that can form amyloid aggregates. Liquid-Liquid Phase Separation (LLPS) is a dynamic and reversible process leading to the creation of membrane-less organelles within the cytoplasm, which is not bound by a membrane that concentrates specific types of biomolecules. These organelles play pivotal roles in cellular signaling, stress response, and the regulation of biomolecular condensates. Recently, LLPS of the Nucleocapsid (N) protein and SARS-CoV-2 RNA has been disclosed, but many questions about the phase separation mechanism and the formation of the virion core are still unclear. We summarize the results of this phenomenon and suggest potentially intriguing issues for future research.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143967691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laís L Brasil-Oliveira, Pedro F N Souza, Carlos R K Paier, Maria G L Bandeira, Lina C B Motta, Raquel C Montenegro, Maria E A de Moraes
{"title":"What Can Proteomics Tell us About COVID-19 Infections? Mass Spectrometry as a Tool to Find New Proteins as Biomarkers.","authors":"Laís L Brasil-Oliveira, Pedro F N Souza, Carlos R K Paier, Maria G L Bandeira, Lina C B Motta, Raquel C Montenegro, Maria E A de Moraes","doi":"10.2174/0113892037364237250402151440","DOIUrl":"https://doi.org/10.2174/0113892037364237250402151440","url":null,"abstract":"<p><p>The COVID-19 outbreak, caused by the SARS-CoV-2 coronavirus, has threatened and taken many lives since the end of 2019. Given the importance of COVID-19 worldwide, since its spread, many research groups have been seeking blood markers that could help to understand the disease establishment and prognosis. Usually, those markers are proteins with a differential accumulation only during infection. Based on that, proteomic studies have played a crucial role in elucidating diseases. Mass spectrometry (MS) is a promising technique in COVID-19 studies, allowing the identification and quantification of proteins present in the plasma or serum of affected patients. It helps us to understand pathological mechanisms, predict clinical outcomes, and develop specific therapies. MS proteomics revealed biomarkers associated with infection, disease severity, and immune response. Plasma or blood serum is easy to collect and store; however, its composition and the higher concentration of proteins (e.g., albumins) shadow the identification of less abundant proteins, which usually are essential markers. So, clean-up approaches such as depletion strategies and fractionating are often required to analyze blood samples, allowing the identification of low-abundant proteins. This review will discuss many proteomic approaches to discovering new plasma biomarkers of COVID-19 employed in recently published studies. The challenges inherent to blood samples will also be discussed, such as sample preparation, data processing, and identifying reliable biomarkers.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143978498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ravi Kumar Mittal, Gaurav Krishna, Sohini Chowdhury, Sorabh Lakhanpal, Muhammed Shabil, Rajeev Sharma, Sahil Suri
{"title":"From Bugs to Benefits: Edible Insects as Exceptional Protein Sources.","authors":"Ravi Kumar Mittal, Gaurav Krishna, Sohini Chowdhury, Sorabh Lakhanpal, Muhammed Shabil, Rajeev Sharma, Sahil Suri","doi":"10.2174/0113892037379345250407143848","DOIUrl":"https://doi.org/10.2174/0113892037379345250407143848","url":null,"abstract":"<p><strong>Objective: </strong>Eating insects may be healthier and more sustainable than eating animals. Various insect protein hydrolysates are assessed for therapeutic potential in this review.</p><p><strong>Methods: </strong>A wide range of literature pertaining to nutrition compositions and the biological activity of edible insects has been compiled and meticulously examined through the utilization of various scholarly databases, including PubMed and ScienceDirect.</p><p><strong>Results: </strong>Different insect protein hydrolysates had anti-inflammatory, anti-cancer, and antioxidant characteristics in addition to controlling blood sugar and cholesterol. These findings suggest that insect-derived bioactive peptides have health benefits and therapeutic uses.</p><p><strong>Conclusion: </strong>Edible insects may replace traditional foods due to their nutritional and environmental benefits. The biological activity of their protein hydrolysates suggests they could be beneficial food additives or medicines.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143982133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Herbs and their Active Constituents for Gastric Cancer and Related Problems - Preclinical and Clinical Studies.","authors":"Pragya Singh, Neelam Singh, Dheeraj Nagpal, Puneet Gupta","doi":"10.2174/0113892037353177250409095158","DOIUrl":"https://doi.org/10.2174/0113892037353177250409095158","url":null,"abstract":"<p><p>Gastric cancer remains one of the leading cancer-related deaths worldwide. Despite the research advances, many challenges persist because the diseases are usually diagnosed at an advanced stage and have a complex treatment protocol. Conventional treatments such as chemotherapy, radiation, and surgery pose several side effects and low efficiency. The growing worldwide interest in herbal products, particularly, their bioactive ingredients, presents a promising prospect for auxiliary or alternative therapies for gastric cancer.. In vivo experiments show that the given compounds increase the effectiveness and decrease the cumulative harmful impact of conventional anticancer treatments, which may have additive effects. Furthermore, clinical trials have revealed that phytoconstituents have possible anti-gastric cancer properties in humans. Nonetheless, these encouraging preclinical observations have not progressed into clinical practice all that much due to the absence of adequately powered Phase III trials for GC. Therefore, this review stresses the need for well-controlled human interventions to confirm the effectiveness and safety of herb- based therapies. In the long run, the incorporation of these herbal products could present a new approach to constructing the gastric cancer prevention and treatment outlook while minimizing the side effects of conventional treatments and opening up arenas of functional foods and pharmaceuticals.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leila Ben Farhat, Hiba Selmi, Violetta Toth, Amanda Hoarau, Agnes Suli, Kata Sara Labas, Abidi Ferid, Edit Mikó
{"title":"A2 Milk: The Impact of Genetic Variation in Milk Protein on Human Health.","authors":"Leila Ben Farhat, Hiba Selmi, Violetta Toth, Amanda Hoarau, Agnes Suli, Kata Sara Labas, Abidi Ferid, Edit Mikó","doi":"10.2174/0113892037366987250401183000","DOIUrl":"https://doi.org/10.2174/0113892037366987250401183000","url":null,"abstract":"<p><p>Recently, a new type of cow's milk has been commercialized in the markets, called A2 milk. It is derived from a specific allelic composition on chromosome 6. The only difference between A1 and A2 milk results from the polymorphism at the 67 amino acid chain. In this position, A2 milk has a proline amino acid, while A1 milk has a histidine amino acid. Proteins are one of the most important components of milk, especially casein, and have received significant attention as they are the source of bioactive opioid peptides called beta-casomorphin-7. Peptides are released through enzymatic digestion of casein and whey proteins. More precisely, this bioactive peptide is produced by sequential gastrointestinal digestion of bovine A1 variants proteins, while this phenomenon is not present in variant A2. Studies have reported that A1 milk can be harmful to health not only for adults but also for infants and that β-casein A2 becomes a safer choice following the relationship between disease risk and consumption of the beta-casomorphin-7 peptide. Indeed, epidemiological studies suggest that the released beta-casomorphin-7 peptide is a risk factor for the development of diseases in humans, but this has not yet been validated by other studies. In contrast, A2 milk has been suggested as an appropriate substitute for A1 milk since populations consuming milk containing high levels of the A2 beta-casein variant have lower rates of diseases, such as diabetes, coronary heart disease, autism, and schizophrenia.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143985030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Messenger RNA Nanomedicine: Innovations and Future Directions.","authors":"Jyotsana Dwivedi, Pranay Wal, Subbulakshmi Ganesan, Ashish Sharma, Pawan Sharma, Syeda Wajida Kazmi, Reena Gupta","doi":"10.2174/0113892037357900250401020207","DOIUrl":"https://doi.org/10.2174/0113892037357900250401020207","url":null,"abstract":"<p><p>With its high potential, mRNA nanomedicine has become one of the transformative frontiers of modern therapeutic strategies for treating and preventing a wide array of diseases. This review article covers recent developments in mRNA nanomedicine and its prospects in terms of innovations in drug delivery systems, stability improvements, and targeted therapeutic applications. The versatility of mRNA means that almost any protein can potentially be encoded into it, making it a powerhouse for vaccines, gene editing, and protein replacement therapies. Recent breakthroughs in nanoparticle technology have significantly enhanced mRNA molecules' delivery efficiency and stability, surmounting previous barriers concerning rapid degradation and immune system activation. It has been developed Innovations such as LNPs, polymer-based carriers, and hybrid nanocarriers have been central to the success of targeted delivery and the sustained release of mRNA. This review further underlines the potential of mRNA nanomedicine for oncological, infectious, and genetic diseases by highlighting ongoing clinical trials, emerging therapeutic paradigms, and future directions that lay much emphasis on delivery platform optimization, mRNA stability, and broadening the scope of mRNA nanomedicine therapy. With the power of emerging technologies and solving present challenges, mRNA nanomedicine has a vast potential to revolutionize the future landscape of personalized medicine and targeted therapies.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143994027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Firuza Begum, Aman Kumar Mahto, Shalini Kumari, Rikeshwer Prasad Dewangan
{"title":"In-Situ Synthesis of Silver Nanoparticle within Self-Assembling Ultrashort Peptide Hydrogel as Antibacterial with Wound Healing Properties.","authors":"Firuza Begum, Aman Kumar Mahto, Shalini Kumari, Rikeshwer Prasad Dewangan","doi":"10.2174/0113892037367553250327084808","DOIUrl":"https://doi.org/10.2174/0113892037367553250327084808","url":null,"abstract":"<p><strong>Introduction/objectives: </strong>Silver nanoparticles [AgNPs] are promising antimicrobial agents, but their synthesis often involves toxic reducing agents. To address this, we developed a green synthesis methodology employing an in-situ approach for synthesizing AgNPs within self- -assembled ultrashort peptide hydrogels through photochemical synthesis, eliminating the need for toxic chemicals.</p><p><strong>Methods: </strong>A novel tetrapeptide was designed and synthesized to form hydrogels in aqueous solutions. AgNPs were incorporated into the hydrogel via in-situ photochemical synthesis using sunlight. The hydrogel and AgNPs were characterized through spectroscopic and microscopic techniques. The antibacterial efficacy of the AgNP-loaded hydrogel was assessed against gram-positive and gram-negative bacteria, and its wound-healing potential in mammalian cell lines was evaluated.</p><p><strong>Results: </strong>Among the peptides synthesized, PHG-2 formed a hydrogel at a 1% w/v concentration in aqueous solution. Characterization using the gel inversion assay, circular dichroism [CD] spectroscopy, and transmission electron microscopy [TEM] revealed uniform nanofibril self-assembly. UV spectroscopy and TEM confirmed the formation of AgNPs within the hydrogel. While the peptide hydrogel exhibited moderate antibacterial activity alone, the AgNP-loaded hydrogel demonstrated synergistic antibacterial effects against methicillin-resistant Staphylococcus aureus [MRSA] and Escherichia coli. A docking study of all the synthesized peptides was performed against FmtA [an enzyme for cell wall synthesis of MRSA] and results were correlated with the obtained docking score. The silver-loaded peptide hydrogel showed a twofold increase in antibacterial activity against MRSA compared to silver nitrate solutions. The hydrogel significantly promoted wound healing in HEK-293T and MCF-7 cells compared to the control.</p><p><strong>Conclusions: </strong>This study introduces a novel ultrashort tetrapeptide sequence for developing antibacterial agents that are effective against infected wounds while supporting wound healing. Utilizing in-situ photochemical synthesis, the green synthesis approach provides an environmentally friendly and sustainable alternative to conventional methods.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143984635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumel Ashique, Radheshyam Pal, Anas Islam, Himanshu Sharma, Subhajit Mandal, Sanjesh Kumar, Mansi Singh, Samy Selim, Soad K Al Jaouni, Amisha Raikar, Lavanya Lakshminarayana, Bhavinee Sharma, Rashmi Pathak
{"title":"Decoding the Molecular Mechanisms of miRNAs: Protein Interactions in Schizophrenia Pathogenesis.","authors":"Sumel Ashique, Radheshyam Pal, Anas Islam, Himanshu Sharma, Subhajit Mandal, Sanjesh Kumar, Mansi Singh, Samy Selim, Soad K Al Jaouni, Amisha Raikar, Lavanya Lakshminarayana, Bhavinee Sharma, Rashmi Pathak","doi":"10.2174/0113892037362309250319035758","DOIUrl":"https://doi.org/10.2174/0113892037362309250319035758","url":null,"abstract":"<p><p>Schizophrenia is now diagnosed mostly based on symptoms and physical signs rather than the patient's pathological and physiological markers. While oncologists once felt satisfied when their patients experienced a long remission, today, they are leading research into innovative treatments with molecularly targeted drugs, as well as strategies to enhance diagnostic accuracy and alleviate symptoms as the disease advances.Because biomarkers reflect an organism's physiological, physical, and biochemical state, they are very beneficial and have a wide range of real-- world uses. The identification of blood biomarkers may open up new avenues for studying schizophrenia. MicroRNAs (miRNAs) may serve as diagnostic indicators for schizophrenia as their abnormal expression has recently been linked to the disease's pathophysiology. The precise etiological process of schizophrenia remains largely unknown despite the general agreement that developmental and genetic factors play a critical role in the pathophysiology of the disorder. miRNAs have gained recognition as an essential post-transcriptional regulator in the regulation of gene expression in recent decades. The importance of miRNAs for brain development and neuroplasticity is well established.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jithu Jerin James, K V Sandhya, Parasuraman Pavadai, K N Sridhar, S Sudarson, B V Basavaraj, Bharath Srinivasan
{"title":"Exploring Placental Protein-Target Protein Interactions: In Silico and In Vitro Approaches for Osteoarthritis Therapy.","authors":"Jithu Jerin James, K V Sandhya, Parasuraman Pavadai, K N Sridhar, S Sudarson, B V Basavaraj, Bharath Srinivasan","doi":"10.2174/0113892037366889250322043039","DOIUrl":"https://doi.org/10.2174/0113892037366889250322043039","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is a persistent joint condition marked by gradual softening and breakdown of articular cartilage. Current research in OA treatment explores biologics that target proinflammatory cytokines and proteases, as well as promote chondrocyte regeneration and cartilage repair. Human placental tissues, abundant in anti-catabolic factors, can mitigate cartilage degradation by inhibiting protease expression and maintaining cartilage homeostasis in the presence of anabolic factors.</p><p><strong>Objective: </strong>This investigation examined placental protein interactions with proteases and OA target proteins through protein-protein docking and dynamic studies.</p><p><strong>Method: </strong>The NCBI conserved domain database was utilized to predict functional protein domains. Protein sequence motifs were identified using literature, the MEME suite tool, and the My- Hits database. The Expasy-ProtParam online tool was employed to analyze protein physical parameters. ClusPro Advanced Options was used to dock binding site residues of selected placental proteins against specific OA target proteins, while PDBsum and Biovia Discovery Studio were used to visualize and examine molecular interactions. A 100 ns molecular dynamics (MD) study was conducted using DESMOND software.</p><p><strong>Result: </strong>Protein-protein docking revealed strong interactions of placental proteins with docking scores ranging from -1700 to -2450.3 against proteases and -900 to -1400 against specific target proteins. PDBsum analysis of placental protein-target protein docked complexes revealed residue interactions, hydrogen bonds, and non-bonded contacts. Molecular dynamics simulations further confirmed the stability of these complexes, indicating favorable protein-protein interactions (PPIs). The anti-inflammatory activity of human placental tissue against lipopolysaccharide-induced macrophages was investigated using flow cytometry.</p><p><strong>Conclusion: </strong>These results provide a foundation for future experimental studies to confirm the predicted interactions and to explore their potential therapeutic applications in OA treatment. Additionally, patients with OA and other arthritic conditions could benefit from the biologics chondroprotective biofactors, which serve as a promising alternative to conventional knee replacement surgery.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the Role of DPYS: A New Prognostic Biomarker in Sarcoma.","authors":"Guizhen Lyu, Dongbing Li","doi":"10.2174/0113892037362065250227064739","DOIUrl":"https://doi.org/10.2174/0113892037362065250227064739","url":null,"abstract":"<p><strong>Background: </strong>Dihydropyrimidinase (DPYS), a pivotal enzyme in the pyrimidine synthesis pathway, has been increasingly studied for its potential role in cancer therapy. While its presence has been noted in various cancers, its specific impact on sarcoma (SARC) still needs to be fully understood.</p><p><strong>Objective: </strong>This study sought to explore the correlation between DPYS expression and SARC, utilizing data from The Cancer Genome Atlas (TCGA), bioinformatics tools, and experimental validation.</p><p><strong>Methods: </strong>The study employed statistical analysis and logistic regression to assess the link between DPYS expression levels and clinical features in SARC patients. Survival analysis was conducted using the Kaplan-Meier method and Cox regression, evaluating the prognostic significance of DPYS expression. Gene set enrichment analysis and immuno-infiltration analysis were conducted to uncover the potential regulatory mechanisms of the DPYS gene. We validated the expression of DPYS using GSE17674. Quantitative reverse transcription PCR was utilized to measure DPYS expression levels in SARC cell lines.</p><p><strong>Results: </strong>The study found that reduced DPYS expression in SARC correlated with therapeutic response (P = 0.011), histological subtype (P = 0.003), and the presence of residual tumor (P = 0.043). Reduced DPYS expression was a predictor of inferior Overall Survival (OS), with a Hazard Ratio (HR) of 0.56 and a 95% Confidence Interval (CI) of 0.37-0.84 (P = 0.005), as well as Disease-Specific Survival (DSS), with an HR of 0.64 and a 95% CI of 0.41-1.00 (P = 0.048). DPYS expression was also identified as an independent factor for OS in SARC (HR: 0.335; 95% CI: 0.169-0.664; P = 0.002). The gene was associated with various pathways, including GPCR ligand binding, signaling by interleukins, G alpha (i) signaling events, Class A/1 Rhodopsin-like receptors, cytokine-cytokine receptor interaction, and platelet activation. DPYS expression also showed a correlation with certain immune cell infiltrates and was found to be significantly downregulated in SARC cell lines.</p><p><strong>Conclusion: </strong>DPYS may serve as a potential prognostic biomarker and therapeutic target for SARC.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}