l -赖氨酸的化学、发生和生理作用综述。

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mohd Hashim, Intekhab Alam, Mohammad Ahmad, Badruddeen, Juber Akhtar, Mohammad Irfan Khan, Anas Islam, Shumaila Parveen
{"title":"l -赖氨酸的化学、发生和生理作用综述。","authors":"Mohd Hashim, Intekhab Alam, Mohammad Ahmad, Badruddeen, Juber Akhtar, Mohammad Irfan Khan, Anas Islam, Shumaila Parveen","doi":"10.2174/0113892037381647250526073248","DOIUrl":null,"url":null,"abstract":"<p><p>L-lysine, an essential amino acid, is indispensable for numerous biological functions, including protein synthesis, collagen crosslinking, mineral absorption, and carnitine biosynthesis. Its biosynthesis occurs via the Diaminopimelate (DAP) pathway in bacteria and plants and the α-aminoadipate (AAA) pathway in fungi and some archaea. Lysine catabolism primarily involves the saccharopine pathway. Lysine deficiencies can lead to connective tissue disorders, impaired fatty acid metabolism, anemia, and protein-energy malnutrition. Commercial production relies predominantly on microbial fermentation using Corynebacterium glutamicum, with strains enhanced through classical and metabolic engineering approaches. With global production exceeding 1 million tons annually, which is largely dominated by Chinese manufacturers, lysine supplements are readily accessible and exhibit absorption rates comparable to those of dietary protein sources. Beyond its nutritional role, lysine is integral to epigenetic regulation via histone modifications and is implicated in diseases, such as hyperlysinemia and pyridoxine-dependent epilepsies, underscoring its vital role in health maintenance and industrial relevance.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Review of L-Lysine: Chemistry, Occurrence, and Physiological Roles.\",\"authors\":\"Mohd Hashim, Intekhab Alam, Mohammad Ahmad, Badruddeen, Juber Akhtar, Mohammad Irfan Khan, Anas Islam, Shumaila Parveen\",\"doi\":\"10.2174/0113892037381647250526073248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>L-lysine, an essential amino acid, is indispensable for numerous biological functions, including protein synthesis, collagen crosslinking, mineral absorption, and carnitine biosynthesis. Its biosynthesis occurs via the Diaminopimelate (DAP) pathway in bacteria and plants and the α-aminoadipate (AAA) pathway in fungi and some archaea. Lysine catabolism primarily involves the saccharopine pathway. Lysine deficiencies can lead to connective tissue disorders, impaired fatty acid metabolism, anemia, and protein-energy malnutrition. Commercial production relies predominantly on microbial fermentation using Corynebacterium glutamicum, with strains enhanced through classical and metabolic engineering approaches. With global production exceeding 1 million tons annually, which is largely dominated by Chinese manufacturers, lysine supplements are readily accessible and exhibit absorption rates comparable to those of dietary protein sources. Beyond its nutritional role, lysine is integral to epigenetic regulation via histone modifications and is implicated in diseases, such as hyperlysinemia and pyridoxine-dependent epilepsies, underscoring its vital role in health maintenance and industrial relevance.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037381647250526073248\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037381647250526073248","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

赖氨酸是一种必需氨基酸,在蛋白质合成、胶原交联、矿物质吸收和肉碱生物合成等许多生物功能中都是必不可少的。在细菌和植物中通过二氨基己二酸(DAP)途径合成,在真菌和一些古细菌中通过α-氨基己二酸(AAA)途径合成。赖氨酸分解代谢主要涉及糖精途径。赖氨酸缺乏可导致结缔组织紊乱、脂肪酸代谢受损、贫血和蛋白质能量营养不良。商业化生产主要依靠谷氨酸棒状杆菌的微生物发酵,菌株通过经典和代谢工程方法增强。赖氨酸的全球年产量超过100万吨,其中大部分由中国制造商主导,赖氨酸补充剂很容易获得,其吸收率与膳食蛋白质来源相当。除了其营养作用外,赖氨酸还通过组蛋白修饰参与表观遗传调控,并与高赖氨酸血症和吡哆醇依赖性癫痫等疾病有关,强调了其在健康维持和工业相关性中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Review of L-Lysine: Chemistry, Occurrence, and Physiological Roles.

L-lysine, an essential amino acid, is indispensable for numerous biological functions, including protein synthesis, collagen crosslinking, mineral absorption, and carnitine biosynthesis. Its biosynthesis occurs via the Diaminopimelate (DAP) pathway in bacteria and plants and the α-aminoadipate (AAA) pathway in fungi and some archaea. Lysine catabolism primarily involves the saccharopine pathway. Lysine deficiencies can lead to connective tissue disorders, impaired fatty acid metabolism, anemia, and protein-energy malnutrition. Commercial production relies predominantly on microbial fermentation using Corynebacterium glutamicum, with strains enhanced through classical and metabolic engineering approaches. With global production exceeding 1 million tons annually, which is largely dominated by Chinese manufacturers, lysine supplements are readily accessible and exhibit absorption rates comparable to those of dietary protein sources. Beyond its nutritional role, lysine is integral to epigenetic regulation via histone modifications and is implicated in diseases, such as hyperlysinemia and pyridoxine-dependent epilepsies, underscoring its vital role in health maintenance and industrial relevance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信