Justyna Sawicka, Piotr Bollin, Anna Sylla, Mirosława Panasiuk, Michalina Wilkowska, Lidia Ciołek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Całka-Kuc, Adam Liwo, Piotr Hańczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwia Rodziewicz-Motowidło
{"title":"Design and Characterization of Antibacterial Peptide Nanofibrils as Components of Composites for Biomaterial Applications.","authors":"Justyna Sawicka, Piotr Bollin, Anna Sylla, Mirosława Panasiuk, Michalina Wilkowska, Lidia Ciołek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Całka-Kuc, Adam Liwo, Piotr Hańczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwia Rodziewicz-Motowidło","doi":"10.2174/0113892037353453241219185311","DOIUrl":"https://doi.org/10.2174/0113892037353453241219185311","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to design and synthesize the ug46 peptide, incorporate its fibrils into composite materials, and evaluate its structural and antimicrobial properties. Another objective was to utilize spectroscopy and molecular simulation, enhanced by Machine Vision methods, to monitor the aggregation process of the ug46 peptide and assess its potential as a scaffold for an antimicrobial peptide.</p><p><strong>Method: </strong>The structural analysis of the ug46 peptide reveals its dynamic conformational changes. Initially, the peptide exhibits a disordered structure with minimal α-helix content, but as incubation progresses, it aggregates into fibrils rich in β-sheets. This transformation was validated by CD and ThT assays, which showed decreased molar ellipticity and an increase in ThT fluorescence.</p><p><strong>Results: </strong>Laser-induced fluorescence and molecular dynamics simulations further revealed the transition from a compact native state to extended \"worm-like\" filament structures, influenced by peptide concentration and temperature. TEM and AFM confirmed these changes, showing the evolution of protofibrils into mature fibrils with characteristic twists. When incorporated into chitosan- bioglass composites, these fibrils significantly enhanced antimicrobial activity against pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa.</p><p><strong>Conclusion: </strong>Overall, ug46 peptide fibrils show promise as a multifunctional scaffold with structural and antimicrobial benefits in composite biomaterials.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Valuable Target for Therapy: The Metalloproteinase ADAM10.","authors":"Siddhant Tripathi, Yashika Sharma, Dileep Kumar","doi":"10.2174/0113892037348066250117070824","DOIUrl":"https://doi.org/10.2174/0113892037348066250117070824","url":null,"abstract":"<p><p>A special kind of posttranslational process known as proteolytic cleavage controls the half-lives and functions of several extracellular and intracellular proteins. The metalloproteinase ADAM10 has attracted attention because it cleaves a growing amount of protein substrates close to the extracellular membrane leaflet. The process known as \"ectodomain shedding\" controls the turnover of certain transmembrane proteins that are essential for receptor signaling and cell adhesion. It may trigger nuclear transport, intramembrane proteolysis, and cytoplasmic domain signaling. Additional human illnesses linked to ADAM10 include cancer, immune system malfunction, and neurodegeneration. The difficulty in targeting proteases for medicinal reasons stems from the many substrates that these enzymes, particularly ADAM10, have. It is usually necessary to precisely identify the therapeutic beneficial window of use since blocking or accelerating a particular protease activity is linked with undesirable side effects. More knowledge of the regulatory pathways governing ADAM10 expression, subcellular localization, and activity will probably lead to the identification of viable therapeutic targets, enabling more targeted and precise manipulation of the enzyme's proteolytic activity.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Co-Condensation and Co-Aggregation of Amyloid Proteins Linked to Neurodegenerative Diseases.","authors":"Xuefeng Zhang, Yujie Chen, Yuan Tan, Tong Pan, Guanghong Wei","doi":"10.2174/0113892037350729241129054701","DOIUrl":"https://doi.org/10.2174/0113892037350729241129054701","url":null,"abstract":"<p><p>The misfolding and aggregation of amyloid proteins are closely associated with a range of neurodegenerative diseases. Liquid-liquid phase separation (LLPS) can initiate the aggregation of proteins, indicating that LLPS may serve as an alternative pathway for the pathological aggregation of amyloid proteins. The co-occurrence of two or more amyloid pathologies has been observed in extensive pathophysiological studies and is linked to faster disease progression. The co- LLPS (also known as co-condensation) and co-aggregation of different disease-related proteins have been proposed as a potential molecular mechanism for combined neuropathology. Here, we reviewed the current state of knowledge regarding the co-aggregation and co-condensation of various amyloid proteins, including Aβ, tau, α-synuclein, TDP-43, FUS, and hnRNPA/B protein family, C9orf72 dipeptide repeats and prion protein. We briefly introduced the epidemiological correlation among different neurodegenerative diseases and specifically presented recent experimental findings about co-aggregation and co-condensation of two different amyloid proteins. Additionally, we discussed computational studies focusing on the molecular interactions between amyloid proteins to offer mechanistic insights into the co-LLPS and co-aggregation processes. This review provides an overview of the synergistic interactions between different disease-related proteins, which is helpful for understanding the mechanisms of combined neuropathology and developing targeted therapeutic strategies.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomáš Guman, Ján Sýkora, Veronika Demčáková, Gabriel Žoldák
{"title":"Protein Misfolding and Aggregation of Pathological Igg Light Chains in Oncohematological Dyscrasias: From Molecular Pathways to Clinical Implications.","authors":"Tomáš Guman, Ján Sýkora, Veronika Demčáková, Gabriel Žoldák","doi":"10.2174/0113892037336731241029075530","DOIUrl":"https://doi.org/10.2174/0113892037336731241029075530","url":null,"abstract":"<p><p>Neoplastic transformation of B cells of the post-germinative center can lead to oncohematological dyscrasias, which often results in an abnormal production of monoclonal immunoglobulin light chains. The non-physiological production of large amounts of IgG light chains leads to the formation of extracellular deposits called 'aggregomas' and rare conditions such as light chain crystal deposition disease. Kidney manifestations and heavy-chain deposition disease can also occur in plasma cell dyscrasias, emphasizing the role of IgG misfolding and aggregation. This minireview describes molecular mechanisms of IgG light-chain aggregation, as well as the consequences and therapeutic implications of IgG light chain misfolding in these disorders. By elucidating the mechanisms of IgG light chain misfolding and aggregation, researchers can identify specific molecular and cellular pathways. This knowledge opens the door to novel therapeutic targets, offering the potential for interventions that can either prevent the initial misfolding events, promote the proper folding and processing of immunoglobulins, or enhance the clearance of misfolded proteins and aggregates. These protein folding-related issues persist even after the successful elimination of the malignant B cells. Such targeted protein-folding therapies could significantly improve patients' quality of life and contribute to their recovery. Thus, a deep understanding of IgG light chain misfolding and its consequences not only sheds light on the complex biology of oncohematological dyscrasias but also opens the way for innovative treatment strategies that could transform patient care in these conditions, instilling hope and motivation in the healthcare professionals and researchers in this field.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role.","authors":"Mohammadjavad Sotoudeheian","doi":"10.2174/0113892037315931240618085529","DOIUrl":"10.2174/0113892037315931240618085529","url":null,"abstract":"<p><p>Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"6-21"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa Ramos Chevreuil, Vitor Alves Pessoa, Giovanna Lima da Silva, Paula Romenya Dos Santos Gouvea, Larissa Batista do Nascimento Soares, Ceci Sales-Campos
{"title":"Recovery of Proteases and Protease Inhibitors from <i>Ganoderma</i> spp. Cultivated in Amazonian Lignocellulose Wastes.","authors":"Larissa Ramos Chevreuil, Vitor Alves Pessoa, Giovanna Lima da Silva, Paula Romenya Dos Santos Gouvea, Larissa Batista do Nascimento Soares, Ceci Sales-Campos","doi":"10.2174/0113892037297181240605112831","DOIUrl":"10.2174/0113892037297181240605112831","url":null,"abstract":"<p><strong>Background: </strong>Ganoderma spp. are a great source of bioactive molecules. The production and recovery of bioactive molecules vary according to strain, growth substrate, and extraction solution. Variations in protease and their inhibitors in basidiomata from a commercial strain (<i>G. lingzhi</i>) and an Amazonian isolate (<i>Ganoderma</i> sp.) cultivated in Amazonian lignocellulosic wastes and extracted with different solutions are plausible and were investigated in our study.</p><p><strong>Methods: </strong>Basidiomata from cultivation in substrates based on açaí seed, guaruba-cedro sawdust and three lots of marupá sawdust were submitted to extraction in water, Tris-HCl, and sodium phosphate. Protein content, proteases, and protease inhibitors were estimated through different assays. The samples were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR).</p><p><strong>Results: </strong>Tris-HCl provided higher protein extraction from <i>Ganoderma</i> sp. and higher caseinolytic, gelatinolytic, and fibrinolytic activity for <i>G. lingzhi</i> cultivated in açaí. Water extracts of <i>Ganoderma</i> sp., in general, exhibited higher trypsin and papain inhibitor activities compared to G. lingzhi. Extracts in Tris-HCl and sodium phosphate showed more intense protein bands in SDSPAGE, highlighting bands of molecular weights around 100, 50, and 30 kDa. FTIR spectra showed patterns for proteins in all extracts, with variation in transmittance according to substrate and extractor.</p><p><strong>Conclusion: </strong>Water extract from Amazonian <i>Ganoderma</i> sp. cultivated in marupá wastes are promising as a source of protease inhibitors, while the Tris-HCL extract of G. lingzhi from açaí cultivation stands out as a source of proteases with fibrinolytic, caseinolytic, and gelatinolytic activities.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"76-88"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Devesh U Kapoor, Mansi Gaur, Akash Kumar, Mohd Nazam Ansari, Bhupendra Prajapati
{"title":"Bioactive Milk Peptides as a Nutraceutical Opportunity and Challenges.","authors":"Devesh U Kapoor, Mansi Gaur, Akash Kumar, Mohd Nazam Ansari, Bhupendra Prajapati","doi":"10.2174/0113892037319188240806074731","DOIUrl":"10.2174/0113892037319188240806074731","url":null,"abstract":"<p><p>The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"41-56"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peptide Biomarkers - An Emerging Diagnostic Tool and Current Applicable Assay.","authors":"Jing Wu, Rui Yang","doi":"10.2174/0113892037315736240907131856","DOIUrl":"10.2174/0113892037315736240907131856","url":null,"abstract":"<p><p>In the past few decades, impressive progress achieved in technology development and improvement has accelerated the application of peptides as diagnostic biomarkers for various diseases. We outline the advantages of peptides as good diagnostic targets, since they serve as molecular surrogates of enzyme activities, much more specific biomarkers than proteins, and also play vital roles in many biological processes. On the basis of an extensive literature survey, peptide markers with high specificity and sensitivity that are currently applied in clinical tests, as well as recently identified, are summarized for the following four major categories of diseases: neurodegenerative disease, heart failure, infectious disease, and cancer. In addition, we summarize a few prevalent techniques used in peptide biomarker discovery and analysis, such as immunoassays, nanopore-based and nanoparticle-based peptide detection, and also MS-based peptide analysis techniques, and their pros and cons. Currently, there are plenty of analytical technologies available to achieve fast, sensitive and reliable peptide analyses, benefiting from the developments of hardware and instrumentation, as well as data analysis software and databases. Thus, with peptides emerging as sensitive, specific and reliable biomarkers for early detection of diseases, therapeutic monitoring, clinical treatment decisions and disease prognosis, the medical need for peptide biomarkers will increase strongly in the future.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"167-184"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Anticancer Bioactive Peptide Combined with Oxaliplatin Inhibited Gastric Cancer Cells <i>In vitro</i> and <i>In vivo</i>.","authors":"Xian Li, Lihua Kang, Wenyan Han, Xiulan Su","doi":"10.2174/0113892037350632241205040150","DOIUrl":"10.2174/0113892037350632241205040150","url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer has become one of the major diseases threatening human health. This study aimed to investigate the mechanism of an anticancer bioactive peptide (ACBP) combined with oxaliplatin (OXA) on MKN-45, SGC7901, and NCI-N87 differentiated human gastric cancer cells and GES-1 immortalized human gastric mucosal epithelial cells. The therapeutic effect and action mechanism of short-term intermittent ACBP combined with OXA on nude mice with human gastric cancer were also investigated.</p><p><strong>Methods: </strong>The half-maximal inhibitory concentrations of these agents in these cells were measured by an MTT assay, and cell morphological changes were observed by H&E staining. The expression of Lin28, miR-107, miR-609, and Let-7 in these four cell lines was determined by q-PCR after drug treatment. Lin28 protein expression in these four cell lines treated with these drugs was measured by western blotting. Furthermore, activity and quality of life were observed daily in all tumor-bearing nude mice, and the expression of Lin28 in tumor tissue was determined by immunohistochemistry and RT-PCR.</p><p><strong>Results: </strong>The results showed that ACBP inhibited the proliferation of MKN-45, SGC7901, and NCI-N87 gastric cancer cells in a dose-dependent manner and weakly suppressed the proliferation of GES-1 cells. Moreover, its inhibitory effect on proliferation was stronger in poorly differentiated gastric cancer cells. ACBP, OXA, and the combination upregulated Lin28 gene expression in MKN-45 cells and downregulated it in SGC7901 and GES-1 cells. ACBP and the combination therapy downregulated Let-7 expression in MKN-45 cells and upregulated Let-7 expression in SGC7901 cells. The combination of ACBP with OXA demonstrated significant anticancer sensitization. Moreover, it also significantly improved the quality of life of tumor-bearing nude mice and reduced the toxic side effects of chemotherapeutic drugs on nude mice.</p><p><strong>Conclusion: </strong>ACBP alone and in combination with oxaliplatin influenced the expression of tumor stem cell marker gene Lin28 and regulated the expression of microRNAs specifically regulated by Lin28. In addition, the anticancer effects and attenuated sensitization effects of ACBP may be related to the Lin28/miRNA-107 signaling pathway, acting by inhibiting the proliferation of cancerous stem cells. The findings of this study provide a scientific basis for exploring the antitumor mechanism of ACBP alone and combined with chemotherapeutic drugs.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"493-510"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chitosan-Peptide Composites for Tissue Engineering Applications: Advances in Treatment Strategies.","authors":"Swati Gupta Sanjaykumar, Rishabha Malviya, Saurabh Srivastava, Irfan Ahmad, Prerna Uniyal, Bhupinder Singh, Nazima Nisar","doi":"10.2174/0113892037323136240910052119","DOIUrl":"10.2174/0113892037323136240910052119","url":null,"abstract":"<p><p>One of the most well-known instances of an interdisciplinary subject is tissue engineering, where experts from many backgrounds collaborate to address important health issues and improve people's quality of life. Many researchers are interested in using chitosan and its derivatives as an alternative to fabricating scaffold engineering and skin grafts in tissue because of its natural abundance, affordability, biodegradability, biocompatibility, and wound healing properties. Nanomaterials based on peptides can provide cells with the essential biological cues required to promote cellular adhesion and are easily fabricated. Due to such worthy properties of chitosan and peptide, they find their application in tissue engineering and regeneration processes. The implementation of hybrids of chitosan and peptide is increasing in the field of tissue engineering and scaffolding for improved cellular adherence and bioactivity. This review covers the individual applications of peptide and chitosan in tissue engineering and further discusses the role of their conjugates in the same. Here, the recent findings are also discussed, along with studies involving the use of these hybrids in tissue engineering applications.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"185-200"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}