How Useful are Antimicrobial Peptide Properties for Predicting Activity, Selectivity, and Potency?

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Brandt Bertrand, Pablo Luis Hernández Adame, Carlos Munoz-Garay
{"title":"How Useful are Antimicrobial Peptide Properties for Predicting Activity, Selectivity, and Potency?","authors":"Brandt Bertrand, Pablo Luis Hernández Adame, Carlos Munoz-Garay","doi":"10.2174/0113892037317887240625054710","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatic tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037317887240625054710","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatic tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.

抗菌肽特性对预测活性、选择性和效力有多大作用?
抗菌肽(AMPs)作为新一代抗生素的潜在应用已得到认可,但迄今为止,它们尚未如预期那样广泛商业化。尽管目前的生物信息学工具可以仅根据氨基酸序列预测抗菌活性,其准确性令人震惊,但却无法预见肽的选择性和效力。反过来,这不仅在发现和分离有前景的候选化合物方面,最重要的是在设计和开发新型合成肽方面造成了瓶颈。在本文中,我们将讨论根据肽的序列、结构和相关生物物理特性(如长度、净电荷和疏水性)来预测肽的选择性和效力时所面临的挑战。在这里,我们以从无尾目动物中分离出的α-螺旋形成孔抗菌肽家族为案例进行了研究。我们的研究结果表明,预测的多肽特性与报告的微生物检测数据(如对微生物和溶血的最小抑制浓度)之间并不存在一致的关系。在许多情况下,理化性质最好的多肽对微生物菌株的抑制效果很差。在某些情况下,预测的特性非常相似,以至于无法预测同族肽之间的活性差异。我们的总体结论是,必须仔细研究感兴趣的抗菌肽,因为没有通用的策略可以准确预测它们的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信