Brandt Bertrand, Pablo Luis Hernández Adame, Carlos Munoz-Garay
{"title":"How Useful are Antimicrobial Peptide Properties for Predicting Activity, Selectivity, and Potency?","authors":"Brandt Bertrand, Pablo Luis Hernández Adame, Carlos Munoz-Garay","doi":"10.2174/0113892037317887240625054710","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatic tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037317887240625054710","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatic tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.