Current protein & peptide science最新文献

筛选
英文 中文
In-Situ Synthesis of Silver Nanoparticle within Self-Assembling Ultrashort Peptide Hydrogel as Antibacterial with Wound Healing Properties. 自组装超短肽水凝胶中银纳米粒子的原位合成及其抗菌创面愈合性能。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-04-14 DOI: 10.2174/0113892037367553250327084808
Firuza Begum, Aman Kumar Mahto, Shalini Kumari, Rikeshwer Prasad Dewangan
{"title":"In-Situ Synthesis of Silver Nanoparticle within Self-Assembling Ultrashort Peptide Hydrogel as Antibacterial with Wound Healing Properties.","authors":"Firuza Begum, Aman Kumar Mahto, Shalini Kumari, Rikeshwer Prasad Dewangan","doi":"10.2174/0113892037367553250327084808","DOIUrl":"https://doi.org/10.2174/0113892037367553250327084808","url":null,"abstract":"<p><strong>Introduction/objectives: </strong>Silver nanoparticles [AgNPs] are promising antimicrobial agents, but their synthesis often involves toxic reducing agents. To address this, we developed a green synthesis methodology employing an in-situ approach for synthesizing AgNPs within self- -assembled ultrashort peptide hydrogels through photochemical synthesis, eliminating the need for toxic chemicals.</p><p><strong>Methods: </strong>A novel tetrapeptide was designed and synthesized to form hydrogels in aqueous solutions. AgNPs were incorporated into the hydrogel via in-situ photochemical synthesis using sunlight. The hydrogel and AgNPs were characterized through spectroscopic and microscopic techniques. The antibacterial efficacy of the AgNP-loaded hydrogel was assessed against gram-positive and gram-negative bacteria, and its wound-healing potential in mammalian cell lines was evaluated.</p><p><strong>Results: </strong>Among the peptides synthesized, PHG-2 formed a hydrogel at a 1% w/v concentration in aqueous solution. Characterization using the gel inversion assay, circular dichroism [CD] spectroscopy, and transmission electron microscopy [TEM] revealed uniform nanofibril self-assembly. UV spectroscopy and TEM confirmed the formation of AgNPs within the hydrogel. While the peptide hydrogel exhibited moderate antibacterial activity alone, the AgNP-loaded hydrogel demonstrated synergistic antibacterial effects against methicillin-resistant Staphylococcus aureus [MRSA] and Escherichia coli. A docking study of all the synthesized peptides was performed against FmtA [an enzyme for cell wall synthesis of MRSA] and results were correlated with the obtained docking score. The silver-loaded peptide hydrogel showed a twofold increase in antibacterial activity against MRSA compared to silver nitrate solutions. The hydrogel significantly promoted wound healing in HEK-293T and MCF-7 cells compared to the control.</p><p><strong>Conclusions: </strong>This study introduces a novel ultrashort tetrapeptide sequence for developing antibacterial agents that are effective against infected wounds while supporting wound healing. Utilizing in-situ photochemical synthesis, the green synthesis approach provides an environmentally friendly and sustainable alternative to conventional methods.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143984635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the Molecular Mechanisms of miRNAs: Protein Interactions in Schizophrenia Pathogenesis. 解码mirna的分子机制:精神分裂症发病机制中的蛋白质相互作用。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-04-14 DOI: 10.2174/0113892037362309250319035758
Sumel Ashique, Radheshyam Pal, Anas Islam, Himanshu Sharma, Subhajit Mandal, Sanjesh Kumar, Mansi Singh, Samy Selim, Soad K Al Jaouni, Amisha Raikar, Lavanya Lakshminarayana, Bhavinee Sharma, Rashmi Pathak
{"title":"Decoding the Molecular Mechanisms of miRNAs: Protein Interactions in Schizophrenia Pathogenesis.","authors":"Sumel Ashique, Radheshyam Pal, Anas Islam, Himanshu Sharma, Subhajit Mandal, Sanjesh Kumar, Mansi Singh, Samy Selim, Soad K Al Jaouni, Amisha Raikar, Lavanya Lakshminarayana, Bhavinee Sharma, Rashmi Pathak","doi":"10.2174/0113892037362309250319035758","DOIUrl":"https://doi.org/10.2174/0113892037362309250319035758","url":null,"abstract":"<p><p>Schizophrenia is now diagnosed mostly based on symptoms and physical signs rather than the patient's pathological and physiological markers. While oncologists once felt satisfied when their patients experienced a long remission, today, they are leading research into innovative treatments with molecularly targeted drugs, as well as strategies to enhance diagnostic accuracy and alleviate symptoms as the disease advances.Because biomarkers reflect an organism's physiological, physical, and biochemical state, they are very beneficial and have a wide range of real-- world uses. The identification of blood biomarkers may open up new avenues for studying schizophrenia. MicroRNAs (miRNAs) may serve as diagnostic indicators for schizophrenia as their abnormal expression has recently been linked to the disease's pathophysiology. The precise etiological process of schizophrenia remains largely unknown despite the general agreement that developmental and genetic factors play a critical role in the pathophysiology of the disorder. miRNAs have gained recognition as an essential post-transcriptional regulator in the regulation of gene expression in recent decades. The importance of miRNAs for brain development and neuroplasticity is well established.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Placental Protein-Target Protein Interactions: In Silico and In Vitro Approaches for Osteoarthritis Therapy. 探索胎盘蛋白与靶蛋白的相互作用:骨关节炎的计算机和体外治疗方法。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-04-14 DOI: 10.2174/0113892037366889250322043039
Jithu Jerin James, K V Sandhya, Parasuraman Pavadai, K N Sridhar, S Sudarson, B V Basavaraj, Bharath Srinivasan
{"title":"Exploring Placental Protein-Target Protein Interactions: In Silico and In Vitro Approaches for Osteoarthritis Therapy.","authors":"Jithu Jerin James, K V Sandhya, Parasuraman Pavadai, K N Sridhar, S Sudarson, B V Basavaraj, Bharath Srinivasan","doi":"10.2174/0113892037366889250322043039","DOIUrl":"https://doi.org/10.2174/0113892037366889250322043039","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is a persistent joint condition marked by gradual softening and breakdown of articular cartilage. Current research in OA treatment explores biologics that target proinflammatory cytokines and proteases, as well as promote chondrocyte regeneration and cartilage repair. Human placental tissues, abundant in anti-catabolic factors, can mitigate cartilage degradation by inhibiting protease expression and maintaining cartilage homeostasis in the presence of anabolic factors.</p><p><strong>Objective: </strong>This investigation examined placental protein interactions with proteases and OA target proteins through protein-protein docking and dynamic studies.</p><p><strong>Method: </strong>The NCBI conserved domain database was utilized to predict functional protein domains. Protein sequence motifs were identified using literature, the MEME suite tool, and the My- Hits database. The Expasy-ProtParam online tool was employed to analyze protein physical parameters. ClusPro Advanced Options was used to dock binding site residues of selected placental proteins against specific OA target proteins, while PDBsum and Biovia Discovery Studio were used to visualize and examine molecular interactions. A 100 ns molecular dynamics (MD) study was conducted using DESMOND software.</p><p><strong>Result: </strong>Protein-protein docking revealed strong interactions of placental proteins with docking scores ranging from -1700 to -2450.3 against proteases and -900 to -1400 against specific target proteins. PDBsum analysis of placental protein-target protein docked complexes revealed residue interactions, hydrogen bonds, and non-bonded contacts. Molecular dynamics simulations further confirmed the stability of these complexes, indicating favorable protein-protein interactions (PPIs). The anti-inflammatory activity of human placental tissue against lipopolysaccharide-induced macrophages was investigated using flow cytometry.</p><p><strong>Conclusion: </strong>These results provide a foundation for future experimental studies to confirm the predicted interactions and to explore their potential therapeutic applications in OA treatment. Additionally, patients with OA and other arthritic conditions could benefit from the biologics chondroprotective biofactors, which serve as a promising alternative to conventional knee replacement surgery.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Role of DPYS: A New Prognostic Biomarker in Sarcoma. 揭示ddpys的作用:一种新的肉瘤预后生物标志物。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-04-04 DOI: 10.2174/0113892037362065250227064739
Guizhen Lyu, Dongbing Li
{"title":"Unveiling the Role of DPYS: A New Prognostic Biomarker in Sarcoma.","authors":"Guizhen Lyu, Dongbing Li","doi":"10.2174/0113892037362065250227064739","DOIUrl":"https://doi.org/10.2174/0113892037362065250227064739","url":null,"abstract":"<p><strong>Background: </strong>Dihydropyrimidinase (DPYS), a pivotal enzyme in the pyrimidine synthesis pathway, has been increasingly studied for its potential role in cancer therapy. While its presence has been noted in various cancers, its specific impact on sarcoma (SARC) still needs to be fully understood.</p><p><strong>Objective: </strong>This study sought to explore the correlation between DPYS expression and SARC, utilizing data from The Cancer Genome Atlas (TCGA), bioinformatics tools, and experimental validation.</p><p><strong>Methods: </strong>The study employed statistical analysis and logistic regression to assess the link between DPYS expression levels and clinical features in SARC patients. Survival analysis was conducted using the Kaplan-Meier method and Cox regression, evaluating the prognostic significance of DPYS expression. Gene set enrichment analysis and immuno-infiltration analysis were conducted to uncover the potential regulatory mechanisms of the DPYS gene. We validated the expression of DPYS using GSE17674. Quantitative reverse transcription PCR was utilized to measure DPYS expression levels in SARC cell lines.</p><p><strong>Results: </strong>The study found that reduced DPYS expression in SARC correlated with therapeutic response (P = 0.011), histological subtype (P = 0.003), and the presence of residual tumor (P = 0.043). Reduced DPYS expression was a predictor of inferior Overall Survival (OS), with a Hazard Ratio (HR) of 0.56 and a 95% Confidence Interval (CI) of 0.37-0.84 (P = 0.005), as well as Disease-Specific Survival (DSS), with an HR of 0.64 and a 95% CI of 0.41-1.00 (P = 0.048). DPYS expression was also identified as an independent factor for OS in SARC (HR: 0.335; 95% CI: 0.169-0.664; P = 0.002). The gene was associated with various pathways, including GPCR ligand binding, signaling by interleukins, G alpha (i) signaling events, Class A/1 Rhodopsin-like receptors, cytokine-cytokine receptor interaction, and platelet activation. DPYS expression also showed a correlation with certain immune cell infiltrates and was found to be significantly downregulated in SARC cell lines.</p><p><strong>Conclusion: </strong>DPYS may serve as a potential prognostic biomarker and therapeutic target for SARC.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network Pharmacology and Experiments to Verify the Effect and Potential Mechanism of Baicalein on Osteoporosis. 黄芩素治疗骨质疏松的网络药理学及实验研究。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-03-18 DOI: 10.2174/0113892037353878250212053910
Huang Xudong, Li Qi, Ma Wenlong, Li Jinkun, Xu Xiaodong, Zhang Chengyin, Zhang Jiahe, Yuan Yifeng, Shi Xiaolin, Zeng Lingfeng, Wang Weiguo
{"title":"Network Pharmacology and Experiments to Verify the Effect and Potential Mechanism of Baicalein on Osteoporosis.","authors":"Huang Xudong, Li Qi, Ma Wenlong, Li Jinkun, Xu Xiaodong, Zhang Chengyin, Zhang Jiahe, Yuan Yifeng, Shi Xiaolin, Zeng Lingfeng, Wang Weiguo","doi":"10.2174/0113892037353878250212053910","DOIUrl":"https://doi.org/10.2174/0113892037353878250212053910","url":null,"abstract":"<p><strong>Background: </strong>Baicalein (BN), a potent flavonoid derived from scutellaria scutellaria, exhibits an array of noteworthy attributes, such as anti-inflammatory, antibacterial, and antipyretic properties. Furthermore, its potential in treating osteoporosis has been highlighted. Nonetheless, the exact modes of action responsible for its therapeutic effects remain obscure. Hence, this study aims to elucidate the improvement effect of BN on OVX rats and explore its potential mechanism of action in treating osteoporosis through a comprehensive strategy that integrates network pharmacology and rigorous animal experiments.</p><p><strong>Methods: </strong>The potential protein targets and OP disease targets in BN are analyzed using the protein database. The protein interaction diagram is constructed by Cytoscape3.7.2 software, and binding energy is used to evaluate the binding activity between BN and core targets, and some key genes are verified by protein experiments.</p><p><strong>Results: </strong>Topology analysis and prediction reveal that osteoporosis (OP) is associated with more than ten core target proteins. Notably, NAD-dependent deacetylase sirtuin 1 (SIRT1), Androgen Receptor (AR), Estrogen Receptor beta (ESR1), and Cyclooxygenase-2 (PTGS2) emerge as pivotal proteins in the treatment of osteoporosis with BN. The biological process underlying BN treatment of osteoporosis primarily involves the regulation of sex hormone levels, autophagy, inflammatory response, and reactive oxygen metabolism. Moreover, the signaling pathways involved are predominantly the PI3K-Akt pathway, AMPK pathway, and estrogen signaling pathway. Subsequent animal experiments corroborate these findings by demonstrating that BN significantly enhances the expression levels of SIRT1, AR, and ESR1 in tissues, while concurrently reducing the protein expression of PTGS2. This multifaceted approach ultimately achieves the desired therapeutic outcome of osteoporosis treatment.</p><p><strong>Conclusion: </strong>In summary, this study has validated the therapeutic effect of BN on OP and analyzed multiple potential therapeutic targets of BN for osteoporosis, which provides new ideas for further clinical treatment and experimental research of BN.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness and Current Status of Icariin in the Treatment of Rotator Cuff Injury Associated with Osteoporosis. 淫羊藿苷治疗与骨质疏松症相关的肩袖损伤的效果和现状。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-03-11 DOI: 10.2174/0113892037350167250121112656
Xian-Quan Zhang, Guang-Hui Zhou, Zhuo-Xu Gu, Ling-Feng Zeng, Ming-Hui Luo
{"title":"Effectiveness and Current Status of Icariin in the Treatment of Rotator Cuff Injury Associated with Osteoporosis.","authors":"Xian-Quan Zhang, Guang-Hui Zhou, Zhuo-Xu Gu, Ling-Feng Zeng, Ming-Hui Luo","doi":"10.2174/0113892037350167250121112656","DOIUrl":"https://doi.org/10.2174/0113892037350167250121112656","url":null,"abstract":"<p><p>Rotator cuff injury is a disease in which the muscle and tendon that constitute the rotator cuff are torn causing shoulder pain and limited function. Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass, destruction of bone microstructure, decreased bone strength, and increased bone fragility. Both are common musculoskeletal diseases that occur in middle-aged and elderly people, and their prevalence gradually increases with age. Clinically, rotator cuff injury and OP comorbidity are very common, especially in terms of bone metabolism. In recent years, plant natural products have gradually become a research hotspot. Icariin (ICA) is one of the naturally present active ingredients derived from the Berberaceae herb Epimedium. It has various pharmacological effects, such as anti-inflammatory, antioxidant, and anti- tumor properties, and is involved in the regulation of bone metabolism, which can play multiple therapeutic effects through a variety of proteins, receptors, and signaling pathways. Therefore, ICA, as a potential natural drug, is being gradually applied in the treatment of rotator cuff injury combined with OP, which has achieved great clinical efficacy. This study mainly discusses the pharmacological action and action mechanism of ICA in order to explore the potential of ICA to prevent and treat rotator cuff injury combined with OP and provide a theoretical basis for the subsequent clinical application of ICA.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitors of Type II NADH Dehydrogenase Enzyme: A Review. II 型 NADH 脱氢酶抑制剂:综述。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-03-10 DOI: 10.2174/0113892037350396250213115109
Guangzhou Sun, Quanshan Shi, Yuting Song, Lingkai Tang, Siyao Li, Tiantian Yang, Kaixuan Hu, Liang Ma, Xiaodong Shi, Jianping Hu
{"title":"Inhibitors of Type II NADH Dehydrogenase Enzyme: A Review.","authors":"Guangzhou Sun, Quanshan Shi, Yuting Song, Lingkai Tang, Siyao Li, Tiantian Yang, Kaixuan Hu, Liang Ma, Xiaodong Shi, Jianping Hu","doi":"10.2174/0113892037350396250213115109","DOIUrl":"https://doi.org/10.2174/0113892037350396250213115109","url":null,"abstract":"<p><p>Mitochondria are organelles in eukaryotic organisms with an electron transport chain consisting of four complexes (i.e., CI, CII, CIII, and CIV) on the inner membrane, which have functions such as providing energy, electron transport, and generating proton gradients. NADH dehydrogenase type 2 (NDH-2), widely found in bacterial, plant, fungal and protist mitochondria, is a nonproton-pumping single-subunit enzyme bound to the surface of the inner mitochondrial membrane that partially replaces NDH-1. NDH-2 has a crucial role in the energy metabolism of pathogenic microorganisms, and the lack of NDH-2 or its homologs in humans makes NDH-2 an essential target for the development of antimicrobial drugs. There is a wide variety of pathogenic microorganisms that invade the human body and cause diseases; therefore, more and more inhibitors targeting NDH-2 of different pathogenic microorganisms continue to be reported. This paper first reviews the structure and function of NDH-2 and summarizes the classification of compounds targeting NDH-2. Given the relative paucity of inhibition mechanisms for NDH-2, which has greatly hindered the development of targeted drugs, the article concludes with a summary of two possible mechanisms in action: allosteric inhibition and competitive inhibition. This review will provide theoretical support for the subsequent molecular design and modification of drugs targeting the pathogenic microorganism NDH-2.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amyloid-β Clearance with Monoclonal Antibodies: Transforming Alzheimer's Treatment. 单克隆抗体清除淀粉样蛋白β:转化阿尔茨海默病治疗。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-02-20 DOI: 10.2174/0113892037362037250205143911
Rabab Fatima, Yumna Khan, Mudasir Maqbool, Prasanna Srinivasan Ramalingam, Mohammad Gayoor Khan, Ajay Singh Bisht, Md Sadique Hussain
{"title":"Amyloid-β Clearance with Monoclonal Antibodies: Transforming Alzheimer's Treatment.","authors":"Rabab Fatima, Yumna Khan, Mudasir Maqbool, Prasanna Srinivasan Ramalingam, Mohammad Gayoor Khan, Ajay Singh Bisht, Md Sadique Hussain","doi":"10.2174/0113892037362037250205143911","DOIUrl":"https://doi.org/10.2174/0113892037362037250205143911","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive condition that causes the degeneration of nerve cells, leading to a decline in cognitive abilities and memory impairment, significantly affecting millions around the globe. The primary pathological feature of AD is the buildup of amyloid-β (Aβ) plaques in the brain, which has become a major target for therapeutic strategies. This thorough review examines the progress made in next-generation therapies that concentrate on monoclonal antibodies (mAbs) aimed at Aβ. We explore how these antibodies function, their effectiveness in clinical settings, and their safety profiles, specifically discussing notable mAbs, such as aducanumab, donanemab, lecanemab, etc. This review also addresses the difficulties related to Aβ-- targeted treatments. Furthermore, it examines the advancing field of biomarker development and tailored medicine strategies designed to improve the accuracy of AD treatment. By integrating the latest findings from clinical trials and new research, this review offers an in-depth evaluation of the possibilities and challenges associated with mAbs in modifying the progression of AD. Future considerations regarding combination therapies and novel drug delivery methods are also examined, emphasizing the necessity for ongoing research to achieve significant advancements in managing AD. Through this review, we seek to provide clinicians, researchers, and policymakers with insights into the current landscape and future directions of Aβ-targeted therapies, promoting a deeper understanding of their role in addressing AD.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloride Intracellular Channel 1 Enhances Glioblastoma Cell Migration and Epithelial-Mesenchymal Transition by Activating the ERK1/2 Signaling Pathway. 细胞内氯离子通道1通过激活ERK1/2信号通路促进胶质母细胞瘤细胞迁移和上皮间质转化。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-02-19 DOI: 10.2174/0113892037358160250205191300
Kai Zhang, Yue Wu, Lin Han, Xingyu Miao
{"title":"Chloride Intracellular Channel 1 Enhances Glioblastoma Cell Migration and Epithelial-Mesenchymal Transition by Activating the ERK1/2 Signaling Pathway.","authors":"Kai Zhang, Yue Wu, Lin Han, Xingyu Miao","doi":"10.2174/0113892037358160250205191300","DOIUrl":"https://doi.org/10.2174/0113892037358160250205191300","url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is a common primary malignant intracranial tumor in adults associated with high disability and mortality. Despite the use of traditional surgical methods, postoperative radiotherapy, and targeted therapies, the median survival for glioma patients remains disappointingly brief. As a result, there is an urgent need to explore new targets and develop novel targeted drugs to potentially improve patient survival. Notably, CLIC1 expression is upregulated in tumors and correlated to tumor aggressiveness, metastasis, and poor prognosis. Nonetheless, its potential role in gliomas remains largely unclear.</p><p><strong>Objective: </strong>This study aimed to investigate the bioinformatics characteristics and clinicopathological features of CLIC1, including WHO classification and OS.</p><p><strong>Methods: </strong>Immunohistochemistry and western blot analysis were carried out to detect the expression of CLIC1 in glioma tissues. Moreover, CCK8, plate clone formation assay, and EdU proliferation assay were carried out for cell proliferation ability. Transwell and scratch assay were performed for cell invasion and migration. Western blotting was also conducted to verify the relationship between CLIC1 and EMT and ERK1/2 signaling pathway. The effect of the knockdown of CLIC1 on tumor growth capacity was assessed in an intracranial xenograft model.</p><p><strong>Results: </strong>CLIC1 was found to be associated with poor prognosis in glioma patients, and in vivo experiments demonstrated that CLIC1 promoted GBM cell proliferation, invasion, and migration. In addition, CLIC1 positively regulated ERK1/2 signaling to promote the EMT process in GBM cells. In vitro experiments showed that CLIC1 could affect intracranial tumor progression in mice.</p><p><strong>Conclusion: </strong>In summary, these findings expand our knowledge of CLIC1, confirming its oncogenic role and laying the groundwork for future development of pharmacological agents targeting this gene.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Characterization of Antibacterial Peptide Nanofibrils as Components of Composites for Biomaterial Applications. 抗菌肽纳米原纤维用于生物材料复合材料的设计与表征。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-02-19 DOI: 10.2174/0113892037353453241219185311
Justyna Sawicka, Piotr Bollin, Anna Sylla, Mirosława Panasiuk, Michalina Wilkowska, Lidia Ciołek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Całka-Kuc, Adam Liwo, Piotr Hańczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwia Rodziewicz-Motowidło
{"title":"Design and Characterization of Antibacterial Peptide Nanofibrils as Components of Composites for Biomaterial Applications.","authors":"Justyna Sawicka, Piotr Bollin, Anna Sylla, Mirosława Panasiuk, Michalina Wilkowska, Lidia Ciołek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Całka-Kuc, Adam Liwo, Piotr Hańczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwia Rodziewicz-Motowidło","doi":"10.2174/0113892037353453241219185311","DOIUrl":"https://doi.org/10.2174/0113892037353453241219185311","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to design and synthesize the ug46 peptide, incorporate its fibrils into composite materials, and evaluate its structural and antimicrobial properties. Another objective was to utilize spectroscopy and molecular simulation, enhanced by Machine Vision methods, to monitor the aggregation process of the ug46 peptide and assess its potential as a scaffold for an antimicrobial peptide.</p><p><strong>Method: </strong>The structural analysis of the ug46 peptide reveals its dynamic conformational changes. Initially, the peptide exhibits a disordered structure with minimal α-helix content, but as incubation progresses, it aggregates into fibrils rich in β-sheets. This transformation was validated by CD and ThT assays, which showed decreased molar ellipticity and an increase in ThT fluorescence.</p><p><strong>Results: </strong>Laser-induced fluorescence and molecular dynamics simulations further revealed the transition from a compact native state to extended \"worm-like\" filament structures, influenced by peptide concentration and temperature. TEM and AFM confirmed these changes, showing the evolution of protofibrils into mature fibrils with characteristic twists. When incorporated into chitosan- bioglass composites, these fibrils significantly enhanced antimicrobial activity against pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa.</p><p><strong>Conclusion: </strong>Overall, ug46 peptide fibrils show promise as a multifunctional scaffold with structural and antimicrobial benefits in composite biomaterials.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信