Current protein & peptide science最新文献

筛选
英文 中文
Synergistic Effects of Hydrogen Peroxide Preconditioning and Valproic Acid on Hepatic Differentiation of Mesenchymal Stem Cells. 过氧化氢预处理和丙戊酸对间充质干细胞肝分化的协同作用。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-03 DOI: 10.2174/0113892037343658241111051831
Saman Rashid, Asmat Salim, Nadia Naeem, Kanwal Haneef
{"title":"Synergistic Effects of Hydrogen Peroxide Preconditioning and Valproic Acid on Hepatic Differentiation of Mesenchymal Stem Cells.","authors":"Saman Rashid, Asmat Salim, Nadia Naeem, Kanwal Haneef","doi":"10.2174/0113892037343658241111051831","DOIUrl":"https://doi.org/10.2174/0113892037343658241111051831","url":null,"abstract":"<p><strong>Introduction: </strong>Ex vivo preconditioning increases the therapeutic potential of mesenchymal stem cells (MSCs) in terms of antioxidant activity, growth factor production, homing, differentiation, and immunomodulation. Therefore, it is considered an effective strategy to be used before transplantation and therapeutic application of MSCs. Histone deacetylase inhibitor (HDACi), valproic acid (VPA), has been reported to induce hepatic differentiation in MSCs. Although individual studies have shown that preconditioning and epigenetic modification enhance the survival and differentiation of MSCs, the combined effects of these therapies have not been fully explored. This study aims to investigate the combined effect of hydrogen peroxide (H2O2) preconditioning and HDACi (valproic acid) on the differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into hepatic-like cells.</p><p><strong>Methods: </strong>MSCs were first preconditioned with H2O2 and then cultured with VPA. The migration and proliferation potential of the treated cells were evaluated using wound healing and colony-- forming unit assays. Furthermore, the expression of hepatic genes (FOXA2, CK8, CK18, TAT) and proteins (AFP, ALB, TAT) was evaluated in all treated groups.</p><p><strong>Results: </strong>The combined therapy group exhibited enhanced cell migration and proliferation, as evidenced by wound healing and colony-forming unit assays. Additionally, the combined treatment group showed higher expression of FOXA2, CK8, and CK18 hepatic genes and TAT protein, suggesting an improved differentiation of stem cells into hepatocytes.</p><p><strong>Conclusion: </strong>In conclusion, the combination of H2O2 and VPA emerges as an important factor in promoting hepatocyte differentiation. However, further studies are required to optimize this protocol for future therapeutics.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Lactate in Ischemic Stroke: As an Energy Source and Signaling Molecule. 乳酸在缺血性脑卒中中的作用:作为能量来源和信号分子。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-02 DOI: 10.2174/0113892037335945241029111720
Rui Zhang, Xintong Li, Kemeng Liu, Meng Yang, Peiliang Dong, Hua Han
{"title":"The Role of Lactate in Ischemic Stroke: As an Energy Source and Signaling Molecule.","authors":"Rui Zhang, Xintong Li, Kemeng Liu, Meng Yang, Peiliang Dong, Hua Han","doi":"10.2174/0113892037335945241029111720","DOIUrl":"https://doi.org/10.2174/0113892037335945241029111720","url":null,"abstract":"<p><p>Stroke is an acute cerebrovascular disease that causes brain tissue damage due to sudden blockage or rupture of blood vessels in the brain. According to the latest data from the Global Burden of Disease Study, the number of stroke patients worldwide is estimated to exceed 100 million, and more than 80% of patients suffer from stroke. Ischemic stroke is a type of stroke due to which two-thirds of the patients are disabled or even die, seriously affecting the patient's quality of life. Lactate is an indispensable substance in various physiological and pathological cells and plays a regulatory role in different aspects of energy metabolism and signal transduction. Studies have found that during cerebral ischemia and hypoxia, lactate concentration increases significantly, improving the energy supply to the ischemic area. Based on the scientific concept of lactate travelling through the brain, this article focuses on the important role of lactate as an energy source after ischemic stroke and analyzes the relationship between lactate as a signaling molecule and neuroprotection, angiogenesis, and anti-inflammatory effects. The aim of this study is to outline the molecular mechanisms by which lactate exerts its different effects in ischemic stroke. Some references are provided in this study for the research on lactate therapy for ischemic stroke.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Misfolding and Aggregation of Pathological Igg Light Chains in Oncohematological Dyscrasias: From Molecular Pathways to Clinical Implications. 肿瘤血液病中蛋白错误折叠和病理性Igg轻链聚集:从分子途径到临床意义。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-02 DOI: 10.2174/0113892037336731241029075530
Tomáš Guman, Ján Sýkora, Veronika Demčáková, Gabriel Žoldák
{"title":"Protein Misfolding and Aggregation of Pathological Igg Light Chains in Oncohematological Dyscrasias: From Molecular Pathways to Clinical Implications.","authors":"Tomáš Guman, Ján Sýkora, Veronika Demčáková, Gabriel Žoldák","doi":"10.2174/0113892037336731241029075530","DOIUrl":"https://doi.org/10.2174/0113892037336731241029075530","url":null,"abstract":"<p><p>Neoplastic transformation of B cells of the post-germinative center can lead to oncohematological dyscrasias, which often results in an abnormal production of monoclonal immunoglobulin light chains. The non-physiological production of large amounts of IgG light chains leads to the formation of extracellular deposits called 'aggregomas' and rare conditions such as light chain crystal deposition disease. Kidney manifestations and heavy-chain deposition disease can also occur in plasma cell dyscrasias, emphasizing the role of IgG misfolding and aggregation. This minireview describes molecular mechanisms of IgG light-chain aggregation, as well as the consequences and therapeutic implications of IgG light chain misfolding in these disorders. By elucidating the mechanisms of IgG light chain misfolding and aggregation, researchers can identify specific molecular and cellular pathways. This knowledge opens the door to novel therapeutic targets, offering the potential for interventions that can either prevent the initial misfolding events, promote the proper folding and processing of immunoglobulins, or enhance the clearance of misfolded proteins and aggregates. These protein folding-related issues persist even after the successful elimination of the malignant B cells. Such targeted protein-folding therapies could significantly improve patients' quality of life and contribute to their recovery. Thus, a deep understanding of IgG light chain misfolding and its consequences not only sheds light on the complex biology of oncohematological dyscrasias but also opens the way for innovative treatment strategies that could transform patient care in these conditions, instilling hope and motivation in the healthcare professionals and researchers in this field.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery of Proteases and Protease Inhibitors from Ganoderma spp. Cultivated in Amazonian Lignocellulose Wastes. 从亚马逊木质纤维素废料中培养的灵芝中回收蛋白酶和蛋白酶抑制剂。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037297181240605112831
Larissa Ramos Chevreuil, Vitor Alves Pessoa, Giovanna Lima da Silva, Paula Romenya Dos Santos Gouvea, Larissa Batista do Nascimento Soares, Ceci Sales-Campos
{"title":"Recovery of Proteases and Protease Inhibitors from <i>Ganoderma</i> spp. Cultivated in Amazonian Lignocellulose Wastes.","authors":"Larissa Ramos Chevreuil, Vitor Alves Pessoa, Giovanna Lima da Silva, Paula Romenya Dos Santos Gouvea, Larissa Batista do Nascimento Soares, Ceci Sales-Campos","doi":"10.2174/0113892037297181240605112831","DOIUrl":"10.2174/0113892037297181240605112831","url":null,"abstract":"<p><strong>Background: </strong>Ganoderma spp. are a great source of bioactive molecules. The production and recovery of bioactive molecules vary according to strain, growth substrate, and extraction solution. Variations in protease and their inhibitors in basidiomata from a commercial strain (<i>G. lingzhi</i>) and an Amazonian isolate (<i>Ganoderma</i> sp.) cultivated in Amazonian lignocellulosic wastes and extracted with different solutions are plausible and were investigated in our study.</p><p><strong>Methods: </strong>Basidiomata from cultivation in substrates based on açaí seed, guaruba-cedro sawdust and three lots of marupá sawdust were submitted to extraction in water, Tris-HCl, and sodium phosphate. Protein content, proteases, and protease inhibitors were estimated through different assays. The samples were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR).</p><p><strong>Results: </strong>Tris-HCl provided higher protein extraction from <i>Ganoderma</i> sp. and higher caseinolytic, gelatinolytic, and fibrinolytic activity for <i>G. lingzhi</i> cultivated in açaí. Water extracts of <i>Ganoderma</i> sp., in general, exhibited higher trypsin and papain inhibitor activities compared to G. lingzhi. Extracts in Tris-HCl and sodium phosphate showed more intense protein bands in SDSPAGE, highlighting bands of molecular weights around 100, 50, and 30 kDa. FTIR spectra showed patterns for proteins in all extracts, with variation in transmittance according to substrate and extractor.</p><p><strong>Conclusion: </strong>Water extract from Amazonian <i>Ganoderma</i> sp. cultivated in marupá wastes are promising as a source of protease inhibitors, while the Tris-HCL extract of G. lingzhi from açaí cultivation stands out as a source of proteases with fibrinolytic, caseinolytic, and gelatinolytic activities.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"76-88"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role. Mac-2结合蛋白糖基化异构体(M2BPGi)在评估代谢功能障碍相关肝病肝纤维化中的价值:血清生物标志物作用的全面回顾。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037315931240618085529
Mohammadjavad Sotoudeheian
{"title":"Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role.","authors":"Mohammadjavad Sotoudeheian","doi":"10.2174/0113892037315931240618085529","DOIUrl":"10.2174/0113892037315931240618085529","url":null,"abstract":"<p><p>Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"6-21"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive Milk Peptides as a Nutraceutical Opportunity and Challenges. 生物活性牛奶肽作为营养保健品的机遇与挑战。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037319188240806074731
Devesh U Kapoor, Mansi Gaur, Akash Kumar, Mohd Nazam Ansari, Bhupendra Prajapati
{"title":"Bioactive Milk Peptides as a Nutraceutical Opportunity and Challenges.","authors":"Devesh U Kapoor, Mansi Gaur, Akash Kumar, Mohd Nazam Ansari, Bhupendra Prajapati","doi":"10.2174/0113892037319188240806074731","DOIUrl":"10.2174/0113892037319188240806074731","url":null,"abstract":"<p><p>The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"41-56"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide Biomarkers - An Emerging Diagnostic Tool and Current Applicable Assay. 肽生物标记物--一种新兴的诊断工具和当前适用的检测方法。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037315736240907131856
Jing Wu, Rui Yang
{"title":"Peptide Biomarkers - An Emerging Diagnostic Tool and Current Applicable Assay.","authors":"Jing Wu, Rui Yang","doi":"10.2174/0113892037315736240907131856","DOIUrl":"10.2174/0113892037315736240907131856","url":null,"abstract":"<p><p>In the past few decades, impressive progress achieved in technology development and improvement has accelerated the application of peptides as diagnostic biomarkers for various diseases. We outline the advantages of peptides as good diagnostic targets, since they serve as molecular surrogates of enzyme activities, much more specific biomarkers than proteins, and also play vital roles in many biological processes. On the basis of an extensive literature survey, peptide markers with high specificity and sensitivity that are currently applied in clinical tests, as well as recently identified, are summarized for the following four major categories of diseases: neurodegenerative disease, heart failure, infectious disease, and cancer. In addition, we summarize a few prevalent techniques used in peptide biomarker discovery and analysis, such as immunoassays, nanopore-based and nanoparticle-based peptide detection, and also MS-based peptide analysis techniques, and their pros and cons. Currently, there are plenty of analytical technologies available to achieve fast, sensitive and reliable peptide analyses, benefiting from the developments of hardware and instrumentation, as well as data analysis software and databases. Thus, with peptides emerging as sensitive, specific and reliable biomarkers for early detection of diseases, therapeutic monitoring, clinical treatment decisions and disease prognosis, the medical need for peptide biomarkers will increase strongly in the future.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"167-184"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-Peptide Composites for Tissue Engineering Applications: Advances in Treatment Strategies. 用于组织工程应用的壳聚糖-肽复合材料:治疗策略的进展。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037323136240910052119
Swati Gupta Sanjaykumar, Rishabha Malviya, Saurabh Srivastava, Irfan Ahmad, Prerna Uniyal, Bhupinder Singh, Nazima Nisar
{"title":"Chitosan-Peptide Composites for Tissue Engineering Applications: Advances in Treatment Strategies.","authors":"Swati Gupta Sanjaykumar, Rishabha Malviya, Saurabh Srivastava, Irfan Ahmad, Prerna Uniyal, Bhupinder Singh, Nazima Nisar","doi":"10.2174/0113892037323136240910052119","DOIUrl":"10.2174/0113892037323136240910052119","url":null,"abstract":"<p><p>One of the most well-known instances of an interdisciplinary subject is tissue engineering, where experts from many backgrounds collaborate to address important health issues and improve people's quality of life. Many researchers are interested in using chitosan and its derivatives as an alternative to fabricating scaffold engineering and skin grafts in tissue because of its natural abundance, affordability, biodegradability, biocompatibility, and wound healing properties. Nanomaterials based on peptides can provide cells with the essential biological cues required to promote cellular adhesion and are easily fabricated. Due to such worthy properties of chitosan and peptide, they find their application in tissue engineering and regeneration processes. The implementation of hybrids of chitosan and peptide is increasing in the field of tissue engineering and scaffolding for improved cellular adherence and bioactivity. This review covers the individual applications of peptide and chitosan in tissue engineering and further discusses the role of their conjugates in the same. Here, the recent findings are also discussed, along with studies involving the use of these hybrids in tissue engineering applications.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"185-200"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Trends and Challenges in Targeting Tumor Mitochondrial Glycolysis and Oxidative Phosphorylation Pathways for Cancer Therapy. 针对肿瘤线粒体糖酵解和氧化磷酸化途径进行癌症治疗的当前趋势和挑战。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037307636240612112408
Rahul Pratap Singh, Sonali
{"title":"Current Trends and Challenges in Targeting Tumor Mitochondrial Glycolysis and Oxidative Phosphorylation Pathways for Cancer Therapy.","authors":"Rahul Pratap Singh, Sonali","doi":"10.2174/0113892037307636240612112408","DOIUrl":"10.2174/0113892037307636240612112408","url":null,"abstract":"","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"2-5"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility. 揭示 Klotho 的新作用:人类生育中抗衰老因素的全面叙述性回顾。
IF 1.9 4区 生物学
Current protein & peptide science Pub Date : 2025-01-01 DOI: 10.2174/0113892037329291240827113808
Naina Kumar
{"title":"Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility.","authors":"Naina Kumar","doi":"10.2174/0113892037329291240827113808","DOIUrl":"10.2174/0113892037329291240827113808","url":null,"abstract":"<p><p>Klotho, an anti-aging protein, plays a vital role in diverse biological functions, such as regulating calcium and vitamin D levels, preventing chronic fibrosis, acting as an antioxidant and anti-inflammatory agent, safeguarding against cardiovascular and neurodegenerative conditions, as well as exerting anti-apoptotic, anti-senescence effects. Additionally, it contributes to metabolic processes associated with diabetes and exhibits anti-cancer properties. This protein is commonly expressed in organs, such as kidneys, brain, pancreas, parathyroid glands, ovaries, and testes. Recent research has highlighted its significance in human fertility. This narrative review provides insight into the involvement of Klotho protein in male and female fertility, as well as its potential role in managing human infertility in the future. In this study, a search was conducted on literature spanning from November 1997 to June 2024 across multiple databases, including PUBMED, SCOPUS, and Google Scholar, focusing on Klotho proteins. The search utilized keywords, such as \"discovery of Klotho proteins,\" \"Biological functions of Klotho,\" \"Klotho in female fertility,\" \"Klotho and PCOS,\" \"Klotho and cryopreservation,\" and \"Klotho in male infertility.\" Inclusion criteria comprised full-length original or review articles, as well as abstracts, discussing the role of Klotho protein in human fertility, published in English in various peer-reviewed journals. Exclusion criteria involved articles published in languages other than English. Hence, due to its anti-aging characteristics, Klotho protein presents potential roles in male and female fertility and holds promising prospects for reproductive medicine. Further, it holds the potential to become a valuable asset in addressing infertility concerns for both males and females.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"105-112"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信