Current Nanoscience最新文献

筛选
英文 中文
Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium 掺杂镱的 Ti/Zr-SnO2/PbO2 电极提高了茜素黄 R 的电催化降解能力
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-05-13 DOI: 10.2174/0115734137302282240422063450
Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Asha Ergu, Guo-Cong Liu, Jiao Zou, Jin-Gang Yu
{"title":"Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium","authors":"Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Asha Ergu, Guo-Cong Liu, Jiao Zou, Jin-Gang Yu","doi":"10.2174/0115734137302282240422063450","DOIUrl":"https://doi.org/10.2174/0115734137302282240422063450","url":null,"abstract":"Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"28 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Reduction Time for Chemically Synthesized rGO 优化化学合成 rGO 的还原时间
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-05-13 DOI: 10.2174/0115734137295957240420064719
Payal Paul, China Limbu, Joydeep Bisawas, Sanjib Kabi, Kamakhya Prakash Misra, Saikat Chattopadhyay
{"title":"Optimization of Reduction Time for Chemically Synthesized rGO","authors":"Payal Paul, China Limbu, Joydeep Bisawas, Sanjib Kabi, Kamakhya Prakash Misra, Saikat Chattopadhyay","doi":"10.2174/0115734137295957240420064719","DOIUrl":"https://doi.org/10.2174/0115734137295957240420064719","url":null,"abstract":"Introduction: This article presents structural and morphological analysis for graphene oxide (GO) synthesized via Hummers' method and for reduced Graphene Oxide (rGO) prepared by chemical reduction. Graphene Oxide is synthesized from graphite powder at room temperature. Hydrazine hydrate is used as a reducing agent to reduce the accumulated GO. Method: To understand the impact of reduction time on structural parameters of produced rGO, three different time limits, i.e. 4, 5, and 6 hrs at 800 °C are used. FTIR spectra show the presence of all functional groups to confirm the authenticity of rGO samples. The XRD peaks are utilized to calculate different structural parameters for all the samples to identify the effect of reduction time. A change in the band gap energy may be noticed from UV-Vis absorption spectra. Result: It indicates that with the increase in reduction time, the absorption edge shifts to a lower wavelength value. FESEM micrographs reveal a flake-like random growth of rGO with prominent wrinkled structures, which is a signature of graphene-like 2D material. Conclusion: Hence, from the structural and absorption studies, it can be concluded that an increase in reduction time will produce smaller rGO flakes in the Hummers synthesis method.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"207 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Micro/Nano Pattern Arrays with Grating-Based Periodic Structures using the Direct Laser Lithography System 利用直接激光光刻系统开发基于光栅周期结构的微/纳米图案阵列
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-05-08 DOI: 10.2174/0115734137283785240118095556
Rency Rajan, Alfred Kirubaraj, S. Senith, Shajin Prince, S.R. Jino Ramson
{"title":"Development of Micro/Nano Pattern Arrays with Grating-Based Periodic Structures using the Direct Laser Lithography System","authors":"Rency Rajan, Alfred Kirubaraj, S. Senith, Shajin Prince, S.R. Jino Ramson","doi":"10.2174/0115734137283785240118095556","DOIUrl":"https://doi.org/10.2174/0115734137283785240118095556","url":null,"abstract":"Introduction: This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science. Method: Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a three-dimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings. Result: The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a bluray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/nanopattern arrays. Conclusion: Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver-Coated Waste Rubber Micro-Particles with Low Density, High Stability, and Excellent Electromagnetic Shielding Ability: Design, Preparation, and Characterization 具有低密度、高稳定性和优异电磁屏蔽能力的银涂层废橡胶微粒:设计、制备和表征
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-04-27 DOI: 10.2174/0115734137296313240417080456
Xin-Kun Lv, Qi Zhong, Yong-Kun Li, Jin-Gang Yu
{"title":"Silver-Coated Waste Rubber Micro-Particles with Low Density, High Stability, and Excellent Electromagnetic Shielding Ability: Design, Preparation, and Characterization","authors":"Xin-Kun Lv, Qi Zhong, Yong-Kun Li, Jin-Gang Yu","doi":"10.2174/0115734137296313240417080456","DOIUrl":"https://doi.org/10.2174/0115734137296313240417080456","url":null,"abstract":"Introduction: The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks. background: The electromagnetic radiation caused by the increasing application of electronic devices is associated with environmental hazards and health risks. With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current researches. Method: With the rapid development of science and technology, it is urgent to reduce electromagnetic interference by introducing effective electromagnetic shielding materials. Furthermore, novel electromagnetic shielding materials with increasing stability and decreasing density have become the focus of the current research. Herein, silver (Ag) coated rubber (AR) micro-particles (MPs) were prepared by coating Ag nanoparticles (NPs) onto waste AR MPs. objective: Fabrication of Silver (Ag) coated rubber (AR) micro-particles (MPs). Result: The AR MPs not only exhibited superior electromagnetic shielding performance with the electromagnetic interference (EMI) shielding effectiveness (SE) value of 6.1 dB at 5.8 GHz, but also possessed excellent long-time stability (240 h) in high-temperature (85 °C) and high humidity (85% RH) environment. Due to the low density (0.66 g/cm3) of AR-3 MPs, its practical application in lightweight and highly integrated electronic devices is guaranteed. Conclusion: The developed AR MPs have exhibited broad application prospects in the electromagnetic interference (EMI) shielding field due to the good EMI shielding performance, high stability and low density.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"20 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brief Overview of Nanographene Oxide and its Possible Application 纳米石墨烯氧化物及其可能应用简介
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-04-19 DOI: 10.2174/0115734137282716240404052535
Srishti Dutta, Dishen Kumar Banjara, Abhilash Pandey, Devanand Sahu, Vanshika Sharma, Goutam Kumar Patra
{"title":"Brief Overview of Nanographene Oxide and its Possible Application","authors":"Srishti Dutta, Dishen Kumar Banjara, Abhilash Pandey, Devanand Sahu, Vanshika Sharma, Goutam Kumar Patra","doi":"10.2174/0115734137282716240404052535","DOIUrl":"https://doi.org/10.2174/0115734137282716240404052535","url":null,"abstract":": In recent years, graphene oxides have convoked significant attention across various scientific disciplines, including physics, chemistry, and materials science, owing to their extraordinary physical properties, chemical tunability, and vast possibilities for their applications. As a result, our keen interest lies in exploring nanographene oxide and presenting a comprehensive review on this subject. This paper provides a thorough examination of eminently progressive advancements in the synthesis, properties, and performance of graphene oxide. Synthetic chemists venturing into this expanding field of material science and researchers exploring the applications of graphene oxide will find immense value in this review. The comprehensive behavior towards the alchemy of graphene oxide will aid in better apprehension of the current approaches, scope and their limitations in utilizing this remarkable material. Moreover, to promote further research and development in this area, we deliberate on the technical challenges associated with graphene oxide and offer suggestions for several future research directions. This review serves as a valuable resource, encouraging scientific advancements and innovation in the exploration of graphene oxide's potential in various applications. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this paper.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"37 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Lead-Free Cs2TiBr6 Green Perovskite Solar Cell for Future Renewable Energy Applications 为未来可再生能源应用优化无铅 Cs2TiBr6 绿色过氧化物太阳能电池
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-04-19 DOI: 10.2174/0115734137286096240320075126
Jeepa K J, T D Subash, K. S. Joseph Wilson, J. Ajayan, Malathy Batumalay
{"title":"Optimization of Lead-Free Cs2TiBr6 Green Perovskite Solar Cell for Future Renewable Energy Applications","authors":"Jeepa K J, T D Subash, K. S. Joseph Wilson, J. Ajayan, Malathy Batumalay","doi":"10.2174/0115734137286096240320075126","DOIUrl":"https://doi.org/10.2174/0115734137286096240320075126","url":null,"abstract":"Introduction: A modern genre of solar technology is Perovskite solar cells (PSCs), which are growing rapidly because they work well. The composition of links within the hole transport materials, electron transport materials and the footprint on PSCs is perovskite Method: The traditional genre of lead halide perovskite can be swapped with a new perovskite compound called Cs2TiBr6. Cs2TiBr6 has better properties when it comes to light, electricity, and solar energy. When comparing the performance of various electron transport films (ETFs) for the effective operation of perovskite, TiO2 is recognized as an ETF as it has higher thermal stability, low-cost, and appropriate energy level Results: The most productive hole transport film (HTF) for these perovskite solar cells, compared to other HTFs, has been demonstrated as V2O5. Conclusion: The various solar cell characteristics of the proposed device, the \"Au/V2O5/Cs2TiBr6/TiO2/TCO\" perovskite solar cell, are investigated in this examination by tuning the parameters such as temperature, series resistance, defect density, etc.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"12 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Silicon Nanowires 硅纳米线的应用
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-04-03 DOI: 10.2174/0115734137295190240321042642
Yang Feng, Ping Liang, Ziwen Xia, Hongyan Peng, Shihua Zhao
{"title":"Application of Silicon Nanowires","authors":"Yang Feng, Ping Liang, Ziwen Xia, Hongyan Peng, Shihua Zhao","doi":"10.2174/0115734137295190240321042642","DOIUrl":"https://doi.org/10.2174/0115734137295190240321042642","url":null,"abstract":":: Silicon Nanowires (SiNWs), a novel category of nanomaterials, exhibit several outstanding properties, including superior transistor performance, quantum tunneling effects, and remarkable electrical and optical capabilities. These properties are expected to contribute significantly to the development of future nanodevices, such as sensors and optoelectronic components. The potential for device miniaturization with SiNWs is based on their ease of monocrystallization. This leads to a reduced rate of hole-electron complexes and their extensive specific surface area that promotes boundary effects, thereby diminishing conductivity. Characterized by unique structural attributes, SiNWs hold promise for a wide range of applications in various sectors. To date, multiple methods have been established for SiNW fabrication, including solgel, electrochemical, laser ablation, chemical vapor deposition, and thermal vapor deposition techniques. Subsequently, the focus has shifted to the application of SiNWs in electronics, energy, and biomedicine. SiNWs are instrumental in producing high-performance electronic devices, such as field-effect transistors, sensors, and memory units. They also exhibit outstanding photovoltaic properties, making them suitable for high-efficiency solar cell and photocatalyst production. Additionally, SiNWs are poised to make significant contributions to biomedicine, particularly in biosensors, drug delivery systems, and tissue engineering materials. This article provides a concise review of the current status of SiNWs in electronics, sensing devices, and solar cell applications, and their roles in high-performance transistors, biosensors, and solar cells. It concludes with an exploration of the challenges and prospects for SiNWs. In summary, the unique attributes of SiNWs establish them as a versatile nanomaterial with broad applicability. This review offers a comprehensive overview of SiNW research and theoretical insights that may guide similar studies. The insights into recent SiNW research presented here are intended to inform future applications and investigations involving these nanomaterials.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery 鸟瞰石墨烯氧化物纳米系统在治疗传递中的作用
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-03-25 DOI: 10.2174/0115734137299120240312044808
Sanchit Dhankar, Nitika Garg, Samrat Chauhan, Monika Saini
{"title":"A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery","authors":"Sanchit Dhankar, Nitika Garg, Samrat Chauhan, Monika Saini","doi":"10.2174/0115734137299120240312044808","DOIUrl":"https://doi.org/10.2174/0115734137299120240312044808","url":null,"abstract":": The remarkable physicochemical properties of Graphene oxide (GO), a graphene derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic nature is the source of its biological flexibility. The transportation of genes and small molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles, and micelles. This review aims to compile the existing body of knowledge regarding the use of GO in drug delivery by delving into its many potential uses, obstacles, and future developments.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"2018 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites 利用双层/层状 Perovskites 的太阳光辅助光催化降解染料简评
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-03-21 DOI: 10.2174/0115734137296172240311112922
Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash
{"title":"A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites","authors":"Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash","doi":"10.2174/0115734137296172240311112922","DOIUrl":"https://doi.org/10.2174/0115734137296172240311112922","url":null,"abstract":":: During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"4 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly-Thionine/ SWCNT Nanocomposite Coated Electrochemical Sensor for Determination of Vitamin C 用于测定维生素 C 的聚硫氨酸/SWCNT 纳米复合涂层电化学传感器
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-02-28 DOI: 10.2174/0115734137289697240216070503
Sangeetha Dhanapalan, Vasanth Magesh, Raji Atchudan, Sandeep Arya, Dhanraj Ganapathy, Deepak Nallaswamy, Ashok Sundramoorthy
{"title":"Poly-Thionine/ SWCNT Nanocomposite Coated Electrochemical Sensor for Determination of Vitamin C","authors":"Sangeetha Dhanapalan, Vasanth Magesh, Raji Atchudan, Sandeep Arya, Dhanraj Ganapathy, Deepak Nallaswamy, Ashok Sundramoorthy","doi":"10.2174/0115734137289697240216070503","DOIUrl":"https://doi.org/10.2174/0115734137289697240216070503","url":null,"abstract":"Background: The electrochemical sensors convert biological or chemical information, such as analyte concentration or a biomolecular (biochemical receptor) interaction, into electrical signals. In this paper, we describe the development of a poly-thionine/ single-walled carbon nanotube (P-Th/SWCNT) composite for the electrochemical detection of ascorbic acid (vitamin C). Methods: To improve electrochemical performance, we attempted to electro-polymerize the thionine monomers, an essential chemical building block, directly on the surface of singlewalled carbon nanotubes (SWCNT). Results: Field Emission Scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) results revealed that a complex structure of the P-Th/SWCNT was formed. The presence of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) components was confirmed, which indicated the effective fusion of poly-thionine onto SWCNT. Moreover, the X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the composite formation. Utilizing cyclic voltammetry, the composite's electrochemical behavior was examined. Conclusions: Excellent electrocatalytic activity towards the oxidation of ascorbic acid was shown by the P-Th/SWCNT composite. The as-prepared P-Th/SWCNT composite-modified sensor can detect ascorbic acid in food, medical, and pharmaceutical samples.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"17 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信