Current Nanoscience最新文献

筛选
英文 中文
A Comprehensive Review of Self-Assembly Techniques Used to Fabricate as DNA Origami, Block Copolymers, and Colloidal Nanostructures 全面回顾用于制造 DNA 折纸、嵌段共聚物和胶体纳米结构的自组装技术
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-02-14 DOI: 10.2174/0115734137283662240129073747
Roshan Kumar Dubey, Satyam Shukla, Kamal Shah, Hitesh Kumar Dewangan
{"title":"A Comprehensive Review of Self-Assembly Techniques Used to Fabricate as DNA Origami, Block Copolymers, and Colloidal Nanostructures","authors":"Roshan Kumar Dubey, Satyam Shukla, Kamal Shah, Hitesh Kumar Dewangan","doi":"10.2174/0115734137283662240129073747","DOIUrl":"https://doi.org/10.2174/0115734137283662240129073747","url":null,"abstract":": Self-assembly techniques play a pivotal role in the field of nanotechnology, enabling the spontaneous organization of individual building blocks into ordered nanostructures without external intervention. In DNA origami, the design and synthesis of DNA strands allow for precise folding into complex nanoarchitectures. This technique holds immense promise in nanoelectronics, nanomedicine, and nanophotonics, offering nanoscale precision and versatility in structural design. Block copolymers represent another fascinating self-assembly system, driven by phase separation and microdomain formation. Understanding and controlling the self-assembly behavior of block copolymers enable applications in nanolithography, nanopatterning, and nanofabrication, owing to their ability to generate well-defined nanostructures. Colloidal assembly is a versatile and powerful technique for fabricating ordered nanostructures and materials with precise control over their properties. The process involves the spontaneous arrangement of colloidal particles into well-defined structures at the microscale or larger, driven by interparticle interactions, Brownian motion, and entropic effects. As research and technology continue to progress, colloidal assembly holds promising opportunities for creating novel materials with applications in diverse fields, contributing to advancements in nanotechnology, optics, electronics, and biomedicine. The continuous exploration and development of colloidal assembly techniques will undoubtedly open new avenues for innovation and impact various areas of science and technology in the future. This review article provides a comprehensive overview of various self-assembly techniques used to fabricate nanostructures, focusing on DNA origami, block copolymers, and colloidal assembly. With a focus on DNA origami in particular, its uses in drug administration, biosensing, nanofabrication, and computational storage are introduced. There is also a discussion of the potential and difficulties involved in assembling and using DNA origami.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"15 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoencapsulation of Zataria multiflora Essential Oil Containing Linalool Reduced Antibiofilm Resistance against Multidrug-resistant Clinical Strains 含芳樟醇的多花月见草精油纳米胶囊降低了耐多药临床菌株的抗生物膜耐药性
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-02-07 DOI: 10.2174/0115734137281383240116052904
Neda Mohamadi, Mahboubeh Adeli- Sardou, Mehdi Ansari, Atousa pakdel, Muberra Kosar, Fariba Sharififar
{"title":"Nanoencapsulation of Zataria multiflora Essential Oil Containing Linalool Reduced Antibiofilm Resistance against Multidrug-resistant Clinical Strains","authors":"Neda Mohamadi, Mahboubeh Adeli- Sardou, Mehdi Ansari, Atousa pakdel, Muberra Kosar, Fariba Sharififar","doi":"10.2174/0115734137281383240116052904","DOIUrl":"https://doi.org/10.2174/0115734137281383240116052904","url":null,"abstract":"Background: The rise in antimicrobial resistance, caused by the production of biofilms by bacteria, is a significant concern in the field of healthcare. Nanoemulsion technology presents itself as a viable alternative in the quest to circumvent antibiotic resistance in pathogenic bacteria. Objective: The aim of this research was to form a sustainable nanoemulsion from Z. multiflora, and evaluate its antibacterial and anti-biofilm activities against the clinical isolates of Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Materials and Methods: Bioactive compounds of the oil were identified using GC-MS. Zataria multiflora essential oil (ZMEO) nanoemulsion was formulated as a water-dispersible nanoemulsion with a diameter of 184.88 ± 1.18 nm. The antibacterial and antibiofilm activities of the essential oil in both pure and nanoemulsion forms were assessed against pathogenic bacteria causing hospital-acquired infections using minimal inhibitory concentrations (MICs) and the microtiter method, respectively. Results: The main constituents were found to be linalool (78.66 %), carvacrol (14.25 %), and α- pinene (4.53%). Neither ZMEO nor the emulsified ZMEO showed any antimicrobial activity. However, ZMEO exhibited a low inhibition of biofilm formation by P. mirabilis, S. aureus, and P. aeruginosa. The most promising finding was that when the emulsified ZMEO was present at a concentration of 750 μg/mL, it significantly reduced biofilm formation by the aforementioned bacteria to 39.68% ± 2.62, 56.54% ± 3.35, and 59.60% ± 2.88, respectively. This result suggests that ZMEO nanoemulsion has the potential to effectively disrupt persistent biofilms and enhance the penetration of antimicrobial agents into the biofilm matrix. Conclusion: In conclusion, the study provides evidence supporting the use of ZMEO nanoemulsion as a potential treatment option for combating biofilm-related infections caused by Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Further research is warranted to explore the practical application of the proposed essential oil in clinical settings.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"220 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Stability and In vitro Anti-Cancer Activity of Dihydroquercetin Nanoemulsion 二氢槲皮素纳米乳液的稳定性和体外抗癌活性评估
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-02-04 DOI: 10.2174/0115734137267596231203135754
Nguyen Thi Mai Huong, Le Thi Thu Huong, Phan Thi Thuy, Bach Thanh Son, Phan Xuan Thien, Nguyen Trong Tinh, Le Thi Huong, Nguyen Thanh Binh
{"title":"Evaluation of Stability and In vitro Anti-Cancer Activity of Dihydroquercetin Nanoemulsion","authors":"Nguyen Thi Mai Huong, Le Thi Thu Huong, Phan Thi Thuy, Bach Thanh Son, Phan Xuan Thien, Nguyen Trong Tinh, Le Thi Huong, Nguyen Thanh Binh","doi":"10.2174/0115734137267596231203135754","DOIUrl":"https://doi.org/10.2174/0115734137267596231203135754","url":null,"abstract":"Background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions. background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid and commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions. Objective: In the present study, a DHQ nanoemulsion formulation was prepared by Self Nano- Emulsifying Drug Delivery System (SNEDDS) technique to overcome the above disadvantages. Methods: The obtained nanoemulsion system was evaluated for its micro-properties, stability, and in vitro cytotoxic activity against some cancer cells using tetrazolium dyes (MTS assay). Results: Measurement results showed that the DHQ nanoemulsion was successfully synthesized with typical mean droplet sizes from 9 to 11 nm, and revealed excellent stability over time. Dihydroquercetin in nanoemulsion form is more stable than the non-encapsulated form, as evidenced by the maintenance of droplet size in the nanometer range when dispersed in aqueous solution for up to 48 hours. This stability is particularly pronounced in both acidic and neutral environments. In vitro experiments on cytotoxic activities against A549, Hela, and HepG2 cancer cell lines indicated that the prepared DHQ nanoemulsion effectively inhibited the growth of all these cell lines with IC50 values (μg/mL) of 8.0, 20.4, and 29.5 respectively. Conclusion: From the detailed results above, it is evident that the solubility and bioavailability of DHQ can be improved by creating its nanostructure in the form of nanoemulsions. Furthermore, the nano form of DHQ carried within stable nanoemulsions exhibited better performance in inhibiting cancer cells compared to free DHQ. Therefore, further research is required to explore the development of cancer therapeutics utilizing nano DHQ emulsions.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"194 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological Potential of Argan Oil (Argania spinosa) with a Special Focus on its Chemical Composition and Nanoformulations-based Applications 摩洛哥坚果油(Argania spinosa)的药理潜力,特别关注其化学成分和基于纳米制剂的应用
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-29 DOI: 10.2174/0115734137279106231227044328
Taniya Paul, Dorji Drakpa, Prasun Mukherjee, Sukriti Chakrabarty, Karma Jigdrel, Jeena Gupta
{"title":"Pharmacological Potential of Argan Oil (Argania spinosa) with a Special Focus on its Chemical Composition and Nanoformulations-based Applications","authors":"Taniya Paul, Dorji Drakpa, Prasun Mukherjee, Sukriti Chakrabarty, Karma Jigdrel, Jeena Gupta","doi":"10.2174/0115734137279106231227044328","DOIUrl":"https://doi.org/10.2174/0115734137279106231227044328","url":null,"abstract":": Argan oil is a rich source of bioactive chemicals with potential health advantages and is derived from the kernels of the Argania spinosa tree. Since ancient times, argan oil has been used as a natural cure in traditional medicine. Traditional uses of argan oil include cooking, massaging, healing, and curing skin, nails, and hair ailments. Due to the high concentration of monoand polyunsaturated fatty acids, antioxidants, polyphenols, and tocopherols, numerous industries are interested in using them in their top-selling products. Studies have evaluated argan oil's exceptional qualities, which include restoring the skin's water-lipid layer, increasing nutrients in skin cells, stimulating intracellular oxygen, neutralizing free radicals, regulating lipid metabolism, lowering blood pressure, and reducing inflammatory indicators. Utilizing argan oil in diet will help to fight ailments like cancer, diabetes, and cardiovascular conditions. In this article, we reviewed the published literature to delineate argan oil's chemical composition, extraction procedures, and pharmacological potential. Furthermore, we also explored the health-beneficial properties of argan oil-based nano-formulations with evidence to prove their effectiveness against various diseases. Underlying argan oil's rich composition and beneficial effects, exploring its favorable qualities and the mechanisms underlying its curative activity will require extensive research.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"66 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Application of Nanotechnology to Enhance Cutaneous Permeation of Vitamin C and Derivatives 纳米技术在增强维生素 C 及其衍生物皮肤渗透性方面的应用现状
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-29 DOI: 10.2174/0115734137279981240104061749
Beatriz Hecht Ortiz, Denise de Abreu Garófalo, Tatielle do Nascimento, Ana Paula dos Santos Matos, Eduardo Ricci-Junior
{"title":"Current Application of Nanotechnology to Enhance Cutaneous Permeation of Vitamin C and Derivatives","authors":"Beatriz Hecht Ortiz, Denise de Abreu Garófalo, Tatielle do Nascimento, Ana Paula dos Santos Matos, Eduardo Ricci-Junior","doi":"10.2174/0115734137279981240104061749","DOIUrl":"https://doi.org/10.2174/0115734137279981240104061749","url":null,"abstract":"Background:: Vitamin C (VitC), or L-ascorbic acid in topical formulations acts as an antioxidant, depigmentant, stimulator of stratum corneum renewal and collagen synthesis. VitC is a thermolabile, water-soluble compound, oxidizes when its solution is exposed to air, metals and high pH. Derivative compounds were created to circumvent the instability, poor penetration capacity in the stratum corneum. Furthermore, new drug delivery systems using nanotechnology began to be studied, providing protection against degradation and penetration through the skin. Objective:: The current paper aimed at carrying out a systematic review between 2006 and 2023, seeking innovative topical formulations containing VitC and its derivatives, where the problem of low permeation and instability was circumvented. Methods:: The search for articles was performed in the Science Direct, Springer and PubMed databases. The largest amount of information was gathered on innovative formulations for topical use for the delivery of VitC and its derivatives, physicochemical characterization data, in vitro and in vivo studies. Results:: The search in the databases resulted in a total of 3032 articles, of which 16 studies were selected for the integrative review, as they proved the possibility of carrying the active ingredient in nanosystems, allowing increased stability, better permeation properties and in vitro cutaneous release, enabling the therapeutic function of the active ingredient through the application of formulations to the skin. In vivo studies also proved the clinical efficacy of the compound in liposomes, ethosomes and niosomes. Conclusion:: The most described nanocarriers were nanoparticles and liposomes, and one study involved niosomes and ethosomes. Therefore, even though it is not a newly discovered molecule, VitC continues to be studied in topical formulations ensuring stability, permeation, and effectiveness.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"335 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achievements and Difficulties with Batch and Optimization Investigations of Heavy Metal Adsorptive Removal Utilizing Enhanced Biomass-based Adsorption Materials 利用增强型生物质吸附材料进行重金属吸附去除的批量和优化研究的成果与难点
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-29 DOI: 10.2174/0115734137282899240102085324
Mohamed Elfahaam, Mohamed N. Sanad, Mohamed Farouz
{"title":"Achievements and Difficulties with Batch and Optimization Investigations of Heavy Metal Adsorptive Removal Utilizing Enhanced Biomass-based Adsorption Materials","authors":"Mohamed Elfahaam, Mohamed N. Sanad, Mohamed Farouz","doi":"10.2174/0115734137282899240102085324","DOIUrl":"https://doi.org/10.2174/0115734137282899240102085324","url":null,"abstract":": Surface enhancement improves the porousness and surface area (SSA) of biomass materials, which boosts their adsorption capability. This work investigates recent advances in surface modification technologies of biomass-based materials for heavy metal adsorption, including Pb, As, Cr, Fe, Cd, Mn, Cu, Co, Hg, Ni, Zn, and their ions in waters/wastewaters. The chemical structure and surface properties of biomass were examined in connection with various surface modification approaches and their effects on the adsorption process. In addition, adsorption performance we assessed using various operating conditions, isotherms, kinetics, and computational and artificial intelligence methodologies. This study found that acid-activated Posidonia oceanica had the highest adsorption effectiveness of 631.13 mg/g to eliminate Pb2+, whereas H3PO4/furnace-modified oil palm biomass had the lowest (0.1576 mg/g) for removing Cd2+. Important insights into knowledge gaps for changing these materials for extremely effective adsorption performance were emphasized to improve the area.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"172 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Era in Colloidal Carriers Approach for Enhanced Transdermal Drug Delivery 胶体载体强化透皮给药方法的新时代
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-29 DOI: 10.2174/0115734137287023240103063237
Mridul Modgil, Abhishek Sharma
{"title":"Emerging Era in Colloidal Carriers Approach for Enhanced Transdermal Drug Delivery","authors":"Mridul Modgil, Abhishek Sharma","doi":"10.2174/0115734137287023240103063237","DOIUrl":"https://doi.org/10.2174/0115734137287023240103063237","url":null,"abstract":": Colloidal carriers are a promising type of carriers which play a crucial role in transdermal drug delivery and other topical applications. These carriers are usually present in the microscopic size, which offers different methods to enclose and deliver a diverse range of dynamic substances such as medicines, genes, and lipids. They offer distinct advantages by mimicking the natural structure of the skin's lipid bilayers using lipids and allowing the incorporation of different active compounds through the use of polymers. Recently, more advanced technology like artificial intelligence (AI) and machine learning (ML) has been adopted in the pharmaceutical field. The incorporation of artificial intelligence and machine learning techniques in colloidal carriers holds immense promise in revolutionizing the domain of drug delivery and nanomedicine. Machine learning algorithms can undergo training with the use of extensive datasets containing information on drug behavior within the human body, which can predict drug response within the body. Additionally, AI can be employed to anticipate various processes, thereby resulting in an enhanced delivery of medication using carriers. Many studies have shown the use of machine learning (ML) and artificial intelligence (AI) for optimizing the drug-carrying capacity via colloidal carriers. The present review concentrates on various categories of innovative colloidal vehicles in transdermal administration, alongside their penetration technique, benefit, and mechanism in the integumentary system. Outcomes from the different researches are critically assessed and showcase the potential of colloidal carriers to augment the penetration of drugs through the stratum corneum while minimizing adverse effects on the entire system with improved therapeutic effectiveness in various diseases.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"23 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cytotoxicity Effect of Chitosan-Encapsulated Ricin-Herceptin Immunotoxin Nanoparticles on Breast Cancer Cell Lines 壳聚糖包裹的蓖麻毒素-赫赛汀免疫毒素纳米粒子对乳腺癌细胞株的细胞毒性效应
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-29 DOI: 10.2174/0115734137278545240102055626
Mohammad Hossein Golestani Poor, Shohreh Zare Karizi, Seyed Ali Mirhosseini, Mohammad Javad Motamedi, Fateme Frootan, Soghra Khani, Jafar Amani
{"title":"The Cytotoxicity Effect of Chitosan-Encapsulated Ricin-Herceptin Immunotoxin Nanoparticles on Breast Cancer Cell Lines","authors":"Mohammad Hossein Golestani Poor, Shohreh Zare Karizi, Seyed Ali Mirhosseini, Mohammad Javad Motamedi, Fateme Frootan, Soghra Khani, Jafar Amani","doi":"10.2174/0115734137278545240102055626","DOIUrl":"https://doi.org/10.2174/0115734137278545240102055626","url":null,"abstract":"Background:: The use of targeted therapy has been increasing for cancer treatment. The aim of this study is to investigate chitosan-based ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. background: The targeted therapy is growing for cancer treatment. The aim here is to investigate a chitosan based Ricin-Herceptin (rh) immunotoxin on breast cancer cell lines. Methods:: The gene construct encoding immunotoxin was designed, cloned, and expressed in E. coli BL21 (DE3). The expressed proteins were isolated by the nickel-nitrilotriacetic acid column and were analyzed by the Western-blotting. The cytotoxicity of immunotoxin was assayed on breast cell line MCF-7 and using MTT assay at 24 and 48 h treatment. Results:: The immunotoxins extrication rate, size, loading percentage, and electric charge of nanoparticles were reported appropriately as 78%, 151.5 nm, 83.53%, and +11.1 mV, respectively. The encapsulated immunotoxins led to the death of 70% and 78% of MCF-7 cells at 24 and 48 h treatment, respectively. The noncapsulated counterparts at equal doses killed 53% and 62% of cancer cells at the same time points. Conclusion:: The chitosan-immunotoxins impose potential cytotoxic effects on cancer cells. other: Keywords: Herceptin, HER2, Ricin, Targeted therapy, Breast Cancer, Nanoparticles","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"23 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Facile Synthesis of Bimetallic Copper-Silver Nanocomposite and Their Application in Ascorbic Acid Detection 双金属铜银纳米复合材料的简易合成及其在抗坏血酸检测中的应用
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-29 DOI: 10.2174/0115734137281377240103062220
Ridhu Varshini Murugan, Gokul Sridharan, Raji Atchudan, Sandeep Arya, Deepak Nallaswamy, Ashok Sundramoorthy
{"title":"A Facile Synthesis of Bimetallic Copper-Silver Nanocomposite and Their Application in Ascorbic Acid Detection","authors":"Ridhu Varshini Murugan, Gokul Sridharan, Raji Atchudan, Sandeep Arya, Deepak Nallaswamy, Ashok Sundramoorthy","doi":"10.2174/0115734137281377240103062220","DOIUrl":"https://doi.org/10.2174/0115734137281377240103062220","url":null,"abstract":"Background:: An important antioxidant, ascorbic acid, must be detected in several industrial samples collected from food, pharmaceuticals, and water treatment plants. Herein, we reported a method to produce a bimetallic copper-silver (Cu-Ag) nanocomposite and used it in the development of very sensitive and selective electrochemical sensor for the detection of ascorbic acid. Methods:: A simple chemistry concept was used during the synthesis process to reduce the cost while minimizing the use of dangerous chemicals and minimizing the environmental impact. The Strobilanthes kunthiana leaves extract effectively reduced the copper and silver ions, resulting in the creation of an extremely stable and evenly distributed Cu-Ag nanocomposite. Results:: As-prepared bimetallic Cu-Ag nanocomposite exhibited outstanding electrochemical activity against ascorbic acid oxidation. The nanocomposite was examined using field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), elemental mapping (EMap) and X-ray diffraction analysis (XRD) to ascertain its composition, structure, and stability. Using cyclic voltammetry (CV), the electrochemical performance of the nanocomposite and also the detection of ascorbic acid were carried out. The bimetallic Cu-Ag nanocomposite also exhibited better long-term stability and fouling resistance, making it appropriate for use in real-world applications and complex sample matrices. Conclusion:: The bimetallic Cu-Ag nanocomposite coated electrode was used to detect the concentration of ascorbic acid by amperometry. As a result, this study offered a simple chemical method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid. conclusion: Its potential use as an electrochemical sensor for the detection of ascorbic acid opens doors for a variety of industries, including biological diagnostics, judging the quality of food, and environmental monitoring. As a result, this study offers a green method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid. The created nanocomposite has a lot of potential for improving ascorbic acid detection methods while upholding sustainable material synthesis. other: NA","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"165 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Approaches for the Treatment of Rheumatoid Arthritis: An Outlook 治疗类风湿关节炎的新方法:展望
IF 1.5 4区 材料科学
Current Nanoscience Pub Date : 2024-01-26 DOI: 10.2174/0115734137264937231214071646
Priyanka Kumari, Sanjay Jain, Shivani Saraf, Ankita Tiwari, Pritish Panda, Amit Verma
{"title":"Emerging Approaches for the Treatment of Rheumatoid Arthritis: An Outlook","authors":"Priyanka Kumari, Sanjay Jain, Shivani Saraf, Ankita Tiwari, Pritish Panda, Amit Verma","doi":"10.2174/0115734137264937231214071646","DOIUrl":"https://doi.org/10.2174/0115734137264937231214071646","url":null,"abstract":"Background: Rheumatoid arthritis (RA) is an inflammatory disease that causes pannus, thickened synovium, joint bone reabsorption, and acute impairment, and increases the death rate. Many people with RA now live better lives as a result of recent improvements in treatment, which have dramatically slowed the disease's course. However, a significant portion of patients continue to either be non-responsive to existing treatments or have developed a resistance to them. Nanotechnology is becoming a more and more intriguing tool for investigating novel strategies, ranging from treating various disease states to tackling complicated conditions. Objective: The primary goal of the work was to outline the research activities on versatile nanocarriers, like polymeric micelles, nanoparticles, liposomes, etc., with controlled/sustained drug release patterns fabricated to elevate the effectiveness of drug delivery. Method: This review mainly focuses on emerging strategies to deliver various nanocarriers encapsulating anti-rheumatic drugs, enzymes, genes, phytoconstituents, etc. It also includes up-todate progress regarding patents and clinical trials filed for the treatment of RA. Results: In most of the recent studies, nanocarrier-based drug delivery has gained attention worldwide and led to the development of new approaches for treating RA. A better understanding of pathophysiology and signalling pathways helps to select the antirheumatic drug. The encapsulation of active moiety into the novel nanocarrier enhances the solubility of insoluble drugs. It restricts the exposure of the drug to the non-inflamed site using various targeting strategies, like active, passive, or biomimetic targeting and stimuli-responsive carrier systems to enhance the drug delivery mechanism. Conclusion: A brief description of current RA treatments using nanocarrier technology is provided in this paper, along with predictions for potential enhancements to the nanotherapeutic regimen.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"14 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139590695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信