Meenakshi M., Bhaskar R., S.K. Ashok Kumar, Selva Kumar R.
{"title":"A Concise Review on Magnetic Nanoparticles: Their Properties, Types, Synthetic Methods, and Current Trending Applications","authors":"Meenakshi M., Bhaskar R., S.K. Ashok Kumar, Selva Kumar R.","doi":"10.2174/0115734137271993231109174718","DOIUrl":null,"url":null,"abstract":": In recent years, there has been significant research on developing magnetic nanoparticles (MNPs) with multifunctional characteristics. This review focuses on the properties and various types of MNPs, methods of their synthesis, and biomedical, clinical, and other applications. These syntheses of MNPs were achieved by various methods, like precipitation, thermal, pyrolysis, vapor deposition, and sonochemical. MNPs are nano-sized materials with diameters ranging from 1 to 100 nm. The MNPs have been used for various applications in biomedical, cancer theranostic, imaging, drug delivery, biosensing, environment, and agriculture. MNPs have been extensively researched for molecular diagnosis, treatment, and therapeutic outcome monitoring in a range of illnesses. They are perfect for biological applications, including cancer therapy, thrombolysis, and molecular imaging, because of their nanoscale size, surface area, and absence of side effects. In particular, MNPs can be used to conjugate chemotherapeutic medicines (or) target ligands/proteins, making them beneficial for drug delivery. However, up until that time, some ongoing issues and developments in MNPs include toxicity and biocompatibility, targeting accuracy, regulation and safety, clinical translation, hyperthermia therapy, immunomodulatory effects, multifunctionality, and nanoparticle aggregation.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137271993231109174718","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
: In recent years, there has been significant research on developing magnetic nanoparticles (MNPs) with multifunctional characteristics. This review focuses on the properties and various types of MNPs, methods of their synthesis, and biomedical, clinical, and other applications. These syntheses of MNPs were achieved by various methods, like precipitation, thermal, pyrolysis, vapor deposition, and sonochemical. MNPs are nano-sized materials with diameters ranging from 1 to 100 nm. The MNPs have been used for various applications in biomedical, cancer theranostic, imaging, drug delivery, biosensing, environment, and agriculture. MNPs have been extensively researched for molecular diagnosis, treatment, and therapeutic outcome monitoring in a range of illnesses. They are perfect for biological applications, including cancer therapy, thrombolysis, and molecular imaging, because of their nanoscale size, surface area, and absence of side effects. In particular, MNPs can be used to conjugate chemotherapeutic medicines (or) target ligands/proteins, making them beneficial for drug delivery. However, up until that time, some ongoing issues and developments in MNPs include toxicity and biocompatibility, targeting accuracy, regulation and safety, clinical translation, hyperthermia therapy, immunomodulatory effects, multifunctionality, and nanoparticle aggregation.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.