利用双层/层状 Perovskites 的太阳光辅助光催化降解染料简评

IF 1.4 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash
{"title":"利用双层/层状 Perovskites 的太阳光辅助光催化降解染料简评","authors":"Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash","doi":"10.2174/0115734137296172240311112922","DOIUrl":null,"url":null,"abstract":":: During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"4 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites\",\"authors\":\"Rasmirekha Pattanaik, Debapriya Pradhan, Suresh Kumar Dash\",\"doi\":\"10.2174/0115734137296172240311112922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":: During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734137296172240311112922\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137296172240311112922","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

::过去几十年来,人们一直致力于开发无毒、低成本、绿色和可研究的光催化剂,以借助可持续、充足和可再生的太阳光照射降解地表水中的有毒染料。具有广泛应用(包括光催化水净化)的包晶石氧化物具有独特的性质,使其适合在可见光谱下有效地进行催化反应。本微型综述专门研究双/层包晶石及其相关材料,并总结了双/层包晶石光催化剂的最新改进及其在降解有机染料中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites
:: During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Nanoscience
Current Nanoscience 工程技术-材料科学:综合
CiteScore
3.50
自引率
6.70%
发文量
83
审稿时长
4.4 months
期刊介绍: Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine. Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology: Nanoelectronics and photonics Advanced Nanomaterials Nanofabrication and measurement Nanobiotechnology and nanomedicine Nanotechnology for energy Sensors and actuator Computational nanoscience and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信