Critical Reviews in Biotechnology最新文献

筛选
英文 中文
A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. 全面回顾工程菌生产 5-氨基乙酰丙酸的最新进展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-05-05 DOI: 10.1080/07388551.2024.2336532
Ying-Ying Chen, Jia-Cong Huang, Cai-Yun Wu, Shi-Qin Yu, Yue-Tong Wang, Chao Ye, Tian-Qiong Shi, He Huang
{"title":"A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria.","authors":"Ying-Ying Chen, Jia-Cong Huang, Cai-Yun Wu, Shi-Qin Yu, Yue-Tong Wang, Chao Ye, Tian-Qiong Shi, He Huang","doi":"10.1080/07388551.2024.2336532","DOIUrl":"10.1080/07388551.2024.2336532","url":null,"abstract":"<p><p>5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"148-163"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-01-29 DOI: 10.1080/07388551.2024.2449367
Manya Jain, Rajan Vyas
{"title":"Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis.","authors":"Manya Jain, Rajan Vyas","doi":"10.1080/07388551.2024.2449367","DOIUrl":"https://doi.org/10.1080/07388551.2024.2449367","url":null,"abstract":"<p><p>The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of <i>Mycobacterium tuberculosis</i> (<i>M.tb)</i> emphasizes the critical requirement for novel potent drugs. The <i>M.tb</i> demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of <i>M.tb</i> that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host. <i>M.tb</i> is an exceptionally triumphant pathogen, primarily due to its adeptness in developing defense mechanisms against stressful situations. The recent advances emphasize the significance of <i>M.tb</i> stress sensors, including chaperones, proteases, transcription factors, riboswitches, inteins, etc., employed in responding to a spectrum of physiological stresses imposed by the host, encompassing surface stress, host immune responses, osmotic stress, oxidative and nitrosative stresses, cell envelope stress, environmental stress, reductive stress, and drug pressure. These sensors act as silent defenders orchestrating adaptive strategies, with limited comprehensive information in current literature, necessitating a focused review. The <i>M.tb</i> strategies utilizing these stress sensors to mitigate the impact of traumatic conditions demand attention to neutralize this pathogen effectively. Moreover, the intricacies of these stress sensors provide potential targets to design an effective TB drug using structure-based drug design against this formidable global health threat.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-01-23 DOI: 10.1080/07388551.2024.2449403
Muhammad Dilshad Hussain, Tahir Farooq, Ali Kamran, Abdul Basit, Yong Wang, Guy Smagghe, Xiangru Chen
{"title":"Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management.","authors":"Muhammad Dilshad Hussain, Tahir Farooq, Ali Kamran, Abdul Basit, Yong Wang, Guy Smagghe, Xiangru Chen","doi":"10.1080/07388551.2024.2449403","DOIUrl":"https://doi.org/10.1080/07388551.2024.2449403","url":null,"abstract":"<p><p>The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-23"},"PeriodicalIF":8.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro cellular model systems provide a promising alternative to animal experiments for studying the intestine-organ axis.
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-01-23 DOI: 10.1080/07388551.2025.2452620
Alessandra Vitale, Cristiana De Musis, Marida Bimonte, Josep Rubert, Vincenzo Fogliano
{"title":"<i>In vitro</i> cellular model systems provide a promising alternative to animal experiments for studying the intestine-organ axis.","authors":"Alessandra Vitale, Cristiana De Musis, Marida Bimonte, Josep Rubert, Vincenzo Fogliano","doi":"10.1080/07388551.2025.2452620","DOIUrl":"https://doi.org/10.1080/07388551.2025.2452620","url":null,"abstract":"<p><p>Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate <i>in vitro</i> intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks. We conclude that the main advantage of these co-culture models is their versatility since they are modulable systems in which each component can be added, changed, or removed to reproduce a specific physiological condition each time. Additionally, we compare intestinal organoid models and microfluidic systems with well-established co-culture models.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments. 从各种食物蛋白质来源中提取具有潜在抗癌特性的生物活性肽:最新研究现状、生产技术及发展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-01-05 DOI: 10.1080/07388551.2024.2435965
Marwa Hamdi, Bhanu Priya Kilari, Priti Mudgil, Nilesh Prakash Nirmal, Shreesh Ojha, Mohammed Akli Ayoub, Amr Amin, Sajid Maqsood
{"title":"Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments.","authors":"Marwa Hamdi, Bhanu Priya Kilari, Priti Mudgil, Nilesh Prakash Nirmal, Shreesh Ojha, Mohammed Akli Ayoub, Amr Amin, Sajid Maqsood","doi":"10.1080/07388551.2024.2435965","DOIUrl":"https://doi.org/10.1080/07388551.2024.2435965","url":null,"abstract":"<p><p>Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-22"},"PeriodicalIF":8.1,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability. 深海嗜冷生物的冷活性酶:利用其在提高粮食生产和可持续性方面的潜力。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-01-05 DOI: 10.1080/07388551.2024.2435974
Mrinmoy Ghosh, Yunji Heo, Krishna Kanth Pulicherla, Min Woo Ha, Kyoungtag Do, Young-Ok Son
{"title":"Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability.","authors":"Mrinmoy Ghosh, Yunji Heo, Krishna Kanth Pulicherla, Min Woo Ha, Kyoungtag Do, Young-Ok Son","doi":"10.1080/07388551.2024.2435974","DOIUrl":"https://doi.org/10.1080/07388551.2024.2435974","url":null,"abstract":"<p><p>Exploring the untapped potential of deep-sea microorganisms, particularly their cold-active enzymes, or psychrozymes, offers exciting possibilities for revolutionizing various aspects of the food processing industry. This review focuses on these enzymes, derived from the largely unexplored depths of the deep ocean, where microorganisms have developed unique adaptations to extreme conditions. Psychrozymes, as bioactive molecules, hold significant promise for food industry applications. However, despite their potential, the understanding and industrial utilization of psychrozymes remains limited. This review provides an in-depth analysis of how psychrozymes can: improve processing efficiency, enhance sensory qualities, extend product shelf life, and reduce energy consumption across the food production chain. We explore the cryodefense strategies and cold-adaptation mechanisms that support these enzymes, shedding light on the most extensively studied psychrozymes and assessing their journey from theoretical applications to practical use in food production. The key properties, such as stability, substrate specificity, and catalytic efficiency in cold environments, are also discussed. Although psychrozymes show considerable promise, their large-scale application in the food industry remains largely unexplored. This review emphasizes the need for further research to unlock the full potential of psychrozymes, encouraging their broader integration into the food sector to contribute to more sustainable food production processes.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-25"},"PeriodicalIF":8.1,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological production of nicotinamide mononucleotide: a review. 烟酰胺单核苷酸的生物生产:综述。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-12-15 DOI: 10.1080/07388551.2024.2433993
Rhudith B Cabulong, Saroj Raj Kafle, Anju Singh, Mukesh Sharma, Beom Soo Kim
{"title":"Biological production of nicotinamide mononucleotide: a review.","authors":"Rhudith B Cabulong, Saroj Raj Kafle, Anju Singh, Mukesh Sharma, Beom Soo Kim","doi":"10.1080/07388551.2024.2433993","DOIUrl":"https://doi.org/10.1080/07388551.2024.2433993","url":null,"abstract":"<p><p>Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: <i>Escherichia coli, Bacillus subtilis,</i> and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status and advances in the green synthesis of muconic acid. 绿色合成黏液酸的现状与进展。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-12-09 DOI: 10.1080/07388551.2024.2433998
Haoyi Yang, Xiaoyu Lin, Xianen Zhong, Mingfeng Cao, Jifeng Yuan, Zhipeng Li, Xueping Ling, Ning He
{"title":"Current status and advances in the green synthesis of muconic acid.","authors":"Haoyi Yang, Xiaoyu Lin, Xianen Zhong, Mingfeng Cao, Jifeng Yuan, Zhipeng Li, Xueping Ling, Ning He","doi":"10.1080/07388551.2024.2433998","DOIUrl":"https://doi.org/10.1080/07388551.2024.2433998","url":null,"abstract":"<p><p>Muconic acid (MA) is a valuable dicarboxylic acid with three isomers that are extensively utilized in textile and chemical industries. Traditionally, the chemical synthesis of MA consumes nonrenewable petrochemical raw materials and causes significant environmental problems. With the rapid increase in demand for MA, eco-friendly biosynthetic technologies with renewable sources are becoming ideal alternative solutions. This paper systematically reviews recent advances in the biosynthesis of MA isomers, describing not only the mechanism for MA biosynthesis in different microorganisms, including wild and engineered strains, but also focuses on MA production from various renewable resources, especially lignin hydrolysate and lignin-derived aromatics hydrocarbons, such as: benzoic acid, isoeugenol, vanillic acid and phenol. Moreover, <i>cis,cis</i>-muconic acid production from xylose, PET, methane, and glycerol are discussed in detail, providing a much broader substrate spectra and further possibilities for MA large scale industrialization economically. Challenges facing biosynthesis of cis, trans muconic acid and trans, trans muconic acid are discussed finally.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. 减少有毒甲醛,促进C1资源的高效利用。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-12-08 DOI: 10.1080/07388551.2024.2430476
Mengshi Jia, Lei Shao, Jie Jiang, Wankui Jiang, Fengxue Xin, Wenming Zhang, Yujia Jiang, Min Jiang
{"title":"Mitigating toxic formaldehyde to promote efficient utilization of C1 resources.","authors":"Mengshi Jia, Lei Shao, Jie Jiang, Wankui Jiang, Fengxue Xin, Wenming Zhang, Yujia Jiang, Min Jiang","doi":"10.1080/07388551.2024.2430476","DOIUrl":"https://doi.org/10.1080/07388551.2024.2430476","url":null,"abstract":"<p><p>The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-13"},"PeriodicalIF":8.1,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNAi-biofungicides: a quantum leap for tree fungal pathogen management. rnai生物杀菌剂:树木真菌病原体管理的巨大飞跃。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2024-12-08 DOI: 10.1080/07388551.2024.2430478
Gothandapani Sellamuthu, Amrita Chakraborty, Ramesh R Vetukuri, Saravanasakthi Sarath, Amit Roy
{"title":"RNAi-biofungicides: a quantum leap for tree fungal pathogen management.","authors":"Gothandapani Sellamuthu, Amrita Chakraborty, Ramesh R Vetukuri, Saravanasakthi Sarath, Amit Roy","doi":"10.1080/07388551.2024.2430478","DOIUrl":"https://doi.org/10.1080/07388551.2024.2430478","url":null,"abstract":"<p><p>Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-28"},"PeriodicalIF":8.1,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信