CSEE Journal of Power and Energy Systems最新文献

筛选
英文 中文
Improved EAD Algorithm to Estimate Domains of Attraction of Power Systems Including Induction Motors for Transient Voltage Stability Analysis 用于暂态电压稳定分析的包括感应电机在内的电力系统吸引域估计改进EAD算法
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-09-19 DOI: 10.17775/CSEEJPES.2023.04900
Lei Chen;Tianhao Wen;Yuqing Lin;Yang Liu;Q. H. Wu;Chao Hong;Yinsheng Su
{"title":"Improved EAD Algorithm to Estimate Domains of Attraction of Power Systems Including Induction Motors for Transient Voltage Stability Analysis","authors":"Lei Chen;Tianhao Wen;Yuqing Lin;Yang Liu;Q. H. Wu;Chao Hong;Yinsheng Su","doi":"10.17775/CSEEJPES.2023.04900","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.04900","url":null,"abstract":"Transient voltage stability analysis (TVSA) of power systems is one of the most computationally challenging tasks in dynamic security assessment. To reduce the complexity of TVSA, this paper proposes an improved expanding annular domain (improved EAD) algorithm to estimate the domain of attraction (DA) of power systems containing multiple induction motors (IMs), whose improvements are concerned with relaxing the restriction on critical value and simplifying iteration steps. The proposed algorithm can systematically construct Lyapunov function for lossy power systems with IMs and their slip constraints. First, the extended Lyapunov stability theory and sum of squares (SOS) programming are presented, which are powerful tools to construct Lyapunov function. Second, the internal node model of IM is developed by an analogy with that of a synchronous generator, and a multi-machine power system model by eliminating algebraic variables is derived. Then, an improved EAD algorithm with SOS programming is proposed to estimate the DA for a power system considering the slip constraint of IM. Finally, the superiority of our method is demonstrated on two modified IEEE test cases. Simulation results show that the proposed algorithm can provide a better estimated DA and critical clearing slip for power systems with multiple IMs.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 6","pages":"2321-2332"},"PeriodicalIF":6.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System LCC-HVDC 系统中并网型中压光伏逆变器的瞬态电压支持策略
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-09-19 DOI: 10.17775/CSEEJPES.2024.00600
Hong Lu;Xianyong Xiao;Guangfu Tang;Zhiyuan He;Zhiguang Lin;Chong Gao;Zixuan Zheng
{"title":"Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System","authors":"Hong Lu;Xianyong Xiao;Guangfu Tang;Zhiyuan He;Zhiguang Lin;Chong Gao;Zixuan Zheng","doi":"10.17775/CSEEJPES.2024.00600","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.00600","url":null,"abstract":"The participation of photovoltaic (PV) plants in supporting the transient voltage caused by commutation failure in the line-commutated-converter-based high voltage direct current (LCC-HVDC) system is of great significance, as it can enhance the DC transmission ability. However, it is found that the grid-following (GFL) PV converters face the problem of mismatch between reactive power response and transient voltage characteristic when the voltage converts from low voltage to overvoltage, further aggravating the overvoltage amplitude. Thus, this article proposes a transient voltage support strategy based on the grid-forming (GFM) medium voltage PV converter. The proposed strategy takes the advantage of the close equivalent electrical distance between the converter and grid, which can autonomously control the converter terminal voltage through GFM control with adaptive voltage droop coefficient. The simulation results show that the proposed strategy can ensure the output reactive power of the PV converter quickly matches the transient voltage characteristic at different stages, indicating that the proposed strategy can effectively support the transient voltage.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"1849-1864"},"PeriodicalIF":6.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684468","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Harmonic State-space Modelling Method on the Modular Multilevel Matrix Converter and Coupling Analysis 模块化多电平矩阵变换器的谐波状态空间建模方法及耦合分析
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-07-24 DOI: 10.17775/CSEEJPES.2024.00370
Jing Li;Boyang Zhao;Shenquan Liu;Jie Li;Xiuli Wang;Xifan Wang
{"title":"A Novel Harmonic State-space Modelling Method on the Modular Multilevel Matrix Converter and Coupling Analysis","authors":"Jing Li;Boyang Zhao;Shenquan Liu;Jie Li;Xiuli Wang;Xifan Wang","doi":"10.17775/CSEEJPES.2024.00370","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.00370","url":null,"abstract":"The fractional frequency transmission system is an emerging technology for long-distance wind power integration, and the modular multilevel matrix converter (M<sup>3</sup>C) is the keen equipment. Since the M<sup>3</sup>C directly connects two ac grids with different frequencies, the external and internal harmonics have complex coupling relationships with a unique dual-fundamental-frequency spectrum, which has not been properly investigated due to a lack of an effective method. To address this issue, a novel harmonic state-space method is proposed to achieve comprehensive modelling of the harmonic dynamics of the M<sup>3</sup>C. Based on the principle of two-dimensional Fourier transform, the decomposition of the dual-fundamental-frequency harmonics is realized, and the multiplicative coupling between time-domain variables is modelled through double-layer convolution on the frequency domain. Besides, the general expression of the proposed method is provided, which highlights a modularized matrix with easy scalability to meet different truncation requirements. Then, the HSS model of M<sup>3</sup>C considering the close-loop control is established, based on which a panoramic harmonic coupling relationship between the system- and the low-frequency side is concluded. Finally, the M<sup>3</sup>C model and harmonic coupling relationship are validated by simulation tests conducted in MATLAB/Simulink environment.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"78-90"},"PeriodicalIF":6.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation PFL-DSSE:用于配电系统状态估计的个性化联合学习方法
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-07-24 DOI: 10.17775/CSEEJPES.2023.08830
Huayi Wu;Zhao Xu;Jiaqi Ruan;Xianzhuo Sun
{"title":"PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation","authors":"Huayi Wu;Zhao Xu;Jiaqi Ruan;Xianzhuo Sun","doi":"10.17775/CSEEJPES.2023.08830","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.08830","url":null,"abstract":"A centralized framework-based data-driven framework for active distribution system state estimation (DSSE) has been widely leveraged. However, it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center. A personalized federated learning-based DSSE method (PFL-DSSE) is proposed in a decentralized training framework for DSSE. Experimental validation confirms that PFL-DSSE can effectively and efficiently maintain data confidentiality and enhance estimation accuracy.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2265-2270"},"PeriodicalIF":6.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609318","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Flexibility of Virtual Power Plants Considering Reconfiguration of District Heating Network 考虑区域供热网络重构增强虚拟电厂灵活性
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-07-24 DOI: 10.17775/CSEEJPES.2022.08680
Peinan Fan;Yixun Xue;Haotian Zhao;Xinyue Chang;Jia Su;Ke Wang;Hongbin Sun
{"title":"Enhancing Flexibility of Virtual Power Plants Considering Reconfiguration of District Heating Network","authors":"Peinan Fan;Yixun Xue;Haotian Zhao;Xinyue Chang;Jia Su;Ke Wang;Hongbin Sun","doi":"10.17775/CSEEJPES.2022.08680","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.08680","url":null,"abstract":"Large-scale renewable energy penetration desires higher flexibility in the power system. Combined heat and power virtual power plants (CUP-VPPs) provide an economic-effective method to improve the power system flexibility by aggregating the distributed resources of an electric-thermal coupling system. The topology can be optimally reconfigured in a power distribution system by operating tie and segment switches. Similarly, the heat flow profile can be redistributed in the district heating system (DHS) with valve switching and provide notable flexibility for CHP-VPPs self-scheduling. To address this issue, an aggregation model for the CHP-VPP is proposed to trade in typical day-ahead energy and reserve electricity markets, which is formulated as an adjustable robust optimization (ARO) problem to assure the realizability of all dispatch requests. The energy flow model is introduced in DHS formulation to make the model solvable. Due to the binary switching variables in the second stage of the proposed ARO problem, classical Karush-Kuhn-Tucker-based algorithms cannot be adopted directly and a nested column-and-constraint generation solution strategy is proposed. Case studies based on an actual CHP-VPP certify the validity of the proposed model and algorithm.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"826-837"},"PeriodicalIF":6.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction Quantification of MTDC Systems Connected with Weak AC Grids 与弱交流电网连接的 MTDC 系统的相互作用量化
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-03-03 DOI: 10.17775/CSEEJPES.2022.08260
Wanning Zheng;Jiabing Hu;Li Chai;Bing Liu;Zixia Sang
{"title":"Interaction Quantification of MTDC Systems Connected with Weak AC Grids","authors":"Wanning Zheng;Jiabing Hu;Li Chai;Bing Liu;Zixia Sang","doi":"10.17775/CSEEJPES.2022.08260","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.08260","url":null,"abstract":"The small-signal stability of multi-terminal high voltage direct current (HVDC) systems has become one of the vital issues in modern power systems. Interactions among voltage source converters (VSCs) have a significant impact on the stability of the system. This paper proposes an interaction quantification method based on the self-/en-stabilizing coefficients of the general \u0000<tex>$boldsymbol{N}-mathbf{terminal}$</tex>\u0000 HVDC system with a weak AC network connection. First, we derive the explicit formulae of self-/en-stabilizing coefficients for any \u0000<tex>$boldsymbol{N}-mathbf{terminal}$</tex>\u0000 HVDC system, which can quantify the interactions through different paths analytically. The relation between the self-/en-stabilizing coefficients and the poles of the system can be used to evaluate the impact of the interactions on the system stability effectively. Then, we employ the obtained formulae to analyze the parameter sensitivity and explain how a parameter affects the stability of the system through different paths of interactions. Finally, extensive examples are given to demonstrate the effectiveness of the proposed method.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2088-2099"},"PeriodicalIF":6.9,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Fault Detection of Multiple Open-Circuit Faults for MMC Systems Based on Long Short-Term Memory Networks 基于长短期记忆网络的 MMC 系统多重开路故障数据驱动型故障检测
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-03-03 DOI: 10.17775/CSEEJPES.2022.05990
Chenxi Fan;Kaishun Xiahou;Lei Wang;Q. H. Wu
{"title":"Data-Driven Fault Detection of Multiple Open-Circuit Faults for MMC Systems Based on Long Short-Term Memory Networks","authors":"Chenxi Fan;Kaishun Xiahou;Lei Wang;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.05990","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.05990","url":null,"abstract":"This paper presents a long short-term memory (LSTM)-based fault detection method to detect the multiple open-circuit switch faults of modular multilevel converter (MMC) systems with full-bridge sub-modules (FB-SMs). Eighteen sensor signals of grid voltages, grid currents and capacitance voltages of MMC for single and multi-switch faults are collected as sampling data. The output signal characteristics of four types of single switch faults of FB-SM, as well as double switch faults in the same and different phases of MMC, are analyzed under the conditions of load variations and control command changes. A multi-layer LSTM network is devised to deeply extract the fault characteristics of MMC under different faults and operation conditions, and a Softmax layer detects the fault types. Simulation results have confirmed that the proposed LSTM-based method has better detection performance compared with three other methods: K-nearest neighbor (KNN), naive bayes (NB) and recurrent neural network (RNN). In addition, it is highly robust to model uncertainties and Gaussian noise. The validity of the proposed method is further demonstrated by experiment studies conducted on a hardware-in-the-loop (HIL) testing platform.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 4","pages":"1563-1574"},"PeriodicalIF":6.9,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated Suppression Method of Fault Current for DC Grid with Novel Dissipative Resistors Topology 采用新型耗散电阻拓扑结构的直流电网故障电流协调抑制方法
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-03-03 DOI: 10.17775/CSEEJPES.2022.07880
Shouqi Jiang;Huanyu Zhao;Guoqing Li;Yechun Xin;Lixin Wang;Weiru Wang
{"title":"Coordinated Suppression Method of Fault Current for DC Grid with Novel Dissipative Resistors Topology","authors":"Shouqi Jiang;Huanyu Zhao;Guoqing Li;Yechun Xin;Lixin Wang;Weiru Wang","doi":"10.17775/CSEEJPES.2022.07880","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07880","url":null,"abstract":"A DC grid based on half-bridge modular multilevel converters (HB-MMC) is a feasible means to realize the friendly grid connection of renewable energy. To solve problems such as the high cost and technical difficulty of DC circuit breakers (DCCB), a coordinated control method for fault current suppression of DC grid connecting wind power is proposed. The key influencing factors of DC fault current are revealed by fault characteristics analysis, and an adaptive current-limiting control method for MMC is proposed, whose parameter selection principles are designed to ensure the safe operation of equipment while achieving effective suppression of fault current. In addition, a novel configuration method of dissipative resistors with the current-limiting function is proposed, which can solve the problem of surplus power in the DC grid and reduce the current stress of converter valves. Based on this, a coordination scheme of dissipative resistors, the adaptive current-limiting control method, and DCCBs are proposed to block fault current, effectively reducing the manufacturing difficulty and cost of DCCB. Finally, a four-terminal DC grid simulation model is built based on the RTLAB OP5600 real-time digital simulation platform, and the effectiveness and feasibility of the proposed methods are verified.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 6","pages":"2371-2383"},"PeriodicalIF":6.9,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double-Layer Optimization Mechanism for Multi-Area OPF Considering Valve-Point Loading Effect 考虑阀点加载效应的多区域OPF双层优化机制
IF 6.9 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-03-03 DOI: 10.17775/CSEEJPES.2022.08660
Jizhong Zhu;Cong Zeng;Yun Liu;Xuancong Xu
{"title":"Double-Layer Optimization Mechanism for Multi-Area OPF Considering Valve-Point Loading Effect","authors":"Jizhong Zhu;Cong Zeng;Yun Liu;Xuancong Xu","doi":"10.17775/CSEEJPES.2022.08660","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.08660","url":null,"abstract":"In terms of the multi-area optimal power flow (OPF) problem, the optimized objectives are always a fuel cost function expressed by a second-order polynomial. However, the valve-point loading effect, whose cost curve is a transcendental function formed by the superposition of the sine and polynomial function, will make the objective function non-convex and non-differentiable. Conventional distributed optimization technologies can hardly make a solution directly. Therefore, it is necessary to realize a distributed solution for multi-area OPF from another point of view. In this paper, we constitute a new double-layer optimization mechanism. The proposed distributed meta-heuristic optimization (DMHO) algorithm is put on the top layer to optimize the dispatching of each area, and in each iteration a distributed power flow calculation method is embedded as the bottom layer to minimize the mismatch of power balance. Numerical experiments demonstrate that the proposed approach not only implements a multi-area OPF distributed solution but also accelerates the convergence rate, improves the solution accuracy and enhances the robustness. In addition, a fully decentralized computation experiment is performed in an actual distributed environment to test its practicability and computation efficiency.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"683-691"},"PeriodicalIF":6.9,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proactive Resilience Enhancement of Power Systems with Link Transmission Model-Based Dynamic Traffic Assignment Among Electric Vehicles 利用基于链路传输模型的电动汽车动态交通分配,主动增强电力系统的复原力
IF 7.1 2区 工程技术
CSEE Journal of Power and Energy Systems Pub Date : 2024-03-03 DOI: 10.17775/CSEEJPES.2022.07470
Haoyuan Yan;Tianyang Zhao;Zhanglei Guan
{"title":"Proactive Resilience Enhancement of Power Systems with Link Transmission Model-Based Dynamic Traffic Assignment Among Electric Vehicles","authors":"Haoyuan Yan;Tianyang Zhao;Zhanglei Guan","doi":"10.17775/CSEEJPES.2022.07470","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07470","url":null,"abstract":"The rapid development of electric vehicles (EVs) is strengthening the bi-directional interactions between electric power networks (EPNs) and transportation networks (TNs) while providing opportunities to enhance the resilience of power systems towards extreme events. To quantify the temporal and spatial flexibility of EVs for charging and discharging, a novel dynamic traffic assignment (DTA) problem is proposed. The DTA problem is based on a link transmission model (LTM) with extended charging links, depicting the interaction between EVs and power systems. It models the charging rates as continuous variables by an energy boundary model. To consider the evacuation requirements of TNs and the uncertainties of traffic conditions, the DTA problem is extended to a two-stage distributionally robust version. It is further incorporated into a two-stage distributionally robust unit commitment problem to balance the enhancement of EPNs and the performance of TNs. The problem is reformulated into a mixed-integer linear programming problem and solved by off-the-shelf commercial solvers. Case studies are performed on two test networks. The effectiveness is verified by the numerical results, e.g., reducing the load shedding amount without increasing the unmet traffic demand.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1320-1330"},"PeriodicalIF":7.1,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信