基于同步发电机的电力系统拉格朗日建模与运动稳定性

IF 5.9 2区 工程技术 Q2 ENERGY & FUELS
Feng Ji;Lu Gao;Chang Lin
{"title":"基于同步发电机的电力系统拉格朗日建模与运动稳定性","authors":"Feng Ji;Lu Gao;Chang Lin","doi":"10.17775/CSEEJPES.2024.00780","DOIUrl":null,"url":null,"abstract":"This paper proposes to analyze the motion stability of synchronous generator-based power systems using a Lagrangian model derived in the configuration space of generalized position and speed. A Lagrangian model of synchronous generators is derived based on Lagrangian mechanics. The generalized potential energy of inductors and the generalized kinetic energy of capacitors are defined. The mechanical and electrical dynamics can be modelled in a unified manner by constructing a Lagrangian function. Taking the first benchmark model of sub-synchronous oscillation as an example, a Lagragian model is constructed, and a numerical solution of the model is obtained to validate the accuracy and effectiveness of the model. Compared with the traditional EMTP model in PSCAD, the obtained Lagrangian model is able to accurately describe the electromagnetic transient process of the system. Moreover, the Lagrangian model is analytical, which enables the analysis of the motion stability of the system using Lyapunov's motion stability theory. The Lagrangian model can not only be used for discussing the power angle stability but also for analyzing the stability of node voltages and system frequency. It provides the feasibility for studying the unified stability of power systems.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"13-23"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838272","citationCount":"0","resultStr":"{\"title\":\"Lagrangian Modelling and Motion Stability of Synchronous Generator-based Power Systems\",\"authors\":\"Feng Ji;Lu Gao;Chang Lin\",\"doi\":\"10.17775/CSEEJPES.2024.00780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to analyze the motion stability of synchronous generator-based power systems using a Lagrangian model derived in the configuration space of generalized position and speed. A Lagrangian model of synchronous generators is derived based on Lagrangian mechanics. The generalized potential energy of inductors and the generalized kinetic energy of capacitors are defined. The mechanical and electrical dynamics can be modelled in a unified manner by constructing a Lagrangian function. Taking the first benchmark model of sub-synchronous oscillation as an example, a Lagragian model is constructed, and a numerical solution of the model is obtained to validate the accuracy and effectiveness of the model. Compared with the traditional EMTP model in PSCAD, the obtained Lagrangian model is able to accurately describe the electromagnetic transient process of the system. Moreover, the Lagrangian model is analytical, which enables the analysis of the motion stability of the system using Lyapunov's motion stability theory. The Lagrangian model can not only be used for discussing the power angle stability but also for analyzing the stability of node voltages and system frequency. It provides the feasibility for studying the unified stability of power systems.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"11 1\",\"pages\":\"13-23\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838272\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10838272/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10838272/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了在广义位置和速度组态空间中导出的拉格朗日模型来分析同步发电机电力系统的运动稳定性。基于拉格朗日力学推导了同步发电机的拉格朗日模型。定义了电感器的广义势能和电容器的广义动能。力学和电动力学可以通过构造拉格朗日函数统一地建模。以次同步振荡的第一个基准模型为例,建立了Lagragian模型,并得到了该模型的数值解,验证了模型的准确性和有效性。与PSCAD中传统的EMTP模型相比,所得到的拉格朗日模型能够准确地描述系统的电磁瞬变过程。此外,拉格朗日模型是解析的,可以使用李亚普诺夫的运动稳定性理论来分析系统的运动稳定性。拉格朗日模型不仅可以用于讨论功率角的稳定性,还可以用于分析节点电压和系统频率的稳定性。为研究电力系统的统一稳定性提供了可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian Modelling and Motion Stability of Synchronous Generator-based Power Systems
This paper proposes to analyze the motion stability of synchronous generator-based power systems using a Lagrangian model derived in the configuration space of generalized position and speed. A Lagrangian model of synchronous generators is derived based on Lagrangian mechanics. The generalized potential energy of inductors and the generalized kinetic energy of capacitors are defined. The mechanical and electrical dynamics can be modelled in a unified manner by constructing a Lagrangian function. Taking the first benchmark model of sub-synchronous oscillation as an example, a Lagragian model is constructed, and a numerical solution of the model is obtained to validate the accuracy and effectiveness of the model. Compared with the traditional EMTP model in PSCAD, the obtained Lagrangian model is able to accurately describe the electromagnetic transient process of the system. Moreover, the Lagrangian model is analytical, which enables the analysis of the motion stability of the system using Lyapunov's motion stability theory. The Lagrangian model can not only be used for discussing the power angle stability but also for analyzing the stability of node voltages and system frequency. It provides the feasibility for studying the unified stability of power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信