Efficient and Stable Learning for Distribution Network Operation: A Model-Based Reinforcement Learning Approach

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Dong Yan;Zhan Shi;Xinying Wang;Yiying Gao;Tianjiao Pu;Jiye Wang
{"title":"Efficient and Stable Learning for Distribution Network Operation: A Model-Based Reinforcement Learning Approach","authors":"Dong Yan;Zhan Shi;Xinying Wang;Yiying Gao;Tianjiao Pu;Jiye Wang","doi":"10.17775/CSEEJPES.2023.09100","DOIUrl":null,"url":null,"abstract":"This paper discusses the application of deep reinforcement learning (DRL) to the economic operation of power distribution networks, a complex system involving numerous flexible resources. Despite the improved control flexibility, traditional prediction-plus-optimization models struggle to adapt to rapidly shifting demands. Modern artificial intelligence (AI) methods, particularly DRL methods, promise faster decision-making but face challenges, including inefficient training and real-world application. This study introduces a reward evaluation system to assess the effectiveness of various strategies and proposes an enhanced algorithm based on the Model-based DRL approach. Incorporating a state transition model, the proposed algorithm augments data and enhances dynamic deduction, improving training efficiency. The effectiveness is demonstrated in various operational scenarios, showing notable enhancements in rationality and transfer generalization.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 3","pages":"1080-1092"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838271","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10838271/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the application of deep reinforcement learning (DRL) to the economic operation of power distribution networks, a complex system involving numerous flexible resources. Despite the improved control flexibility, traditional prediction-plus-optimization models struggle to adapt to rapidly shifting demands. Modern artificial intelligence (AI) methods, particularly DRL methods, promise faster decision-making but face challenges, including inefficient training and real-world application. This study introduces a reward evaluation system to assess the effectiveness of various strategies and proposes an enhanced algorithm based on the Model-based DRL approach. Incorporating a state transition model, the proposed algorithm augments data and enhances dynamic deduction, improving training efficiency. The effectiveness is demonstrated in various operational scenarios, showing notable enhancements in rationality and transfer generalization.
配电网运行高效稳定学习:一种基于模型的强化学习方法
本文讨论了深度强化学习(DRL)在配电网经济运行中的应用,配电网是一个涉及众多柔性资源的复杂系统。尽管控制灵活性有所提高,但传统的预测+优化模型难以适应快速变化的需求。现代人工智能(AI)方法,特别是DRL方法,承诺更快的决策,但面临挑战,包括低效的训练和实际应用。本研究引入了一个奖励评估系统来评估各种策略的有效性,并提出了一种基于基于模型的DRL方法的增强算法。该算法结合状态转移模型,增强了数据量,增强了动态推理能力,提高了训练效率。在各种操作场景中验证了该方法的有效性,在合理性和转移泛化方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信