基于双极直流配电网分支流模型的最佳功率流

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Yiyao Zhou;Qianggang Wang;Xiaolong Xu;Tao Huang;Jianquan Liao;Yuan Chi;Xuefei Zhang;Niancheng Zhou
{"title":"基于双极直流配电网分支流模型的最佳功率流","authors":"Yiyao Zhou;Qianggang Wang;Xiaolong Xu;Tao Huang;Jianquan Liao;Yuan Chi;Xuefei Zhang;Niancheng Zhou","doi":"10.17775/CSEEJPES.2023.08530","DOIUrl":null,"url":null,"abstract":"Optimal Power Flow (OPF) plays a crucial role in optimization and operation of the bipolar DC distribution network (Bi-DCDN). However, existing OPF models encounter difficulties in the power optimization of Bi-DCDNs due to the optimal power expressed as a product form, i.e., the product of voltage and current. Hence, this brief formulates the OPF problem of Bi-DCDNs using the branch flow model (BFM). The BFM employs power, instead of current, to account for the unique structure of Bi-DCDNs. Convex relaxation and linear approximation are sequentially applied to reformulate the BFM-based OPF, presenting it as a second-order cone programming (SOCP) problem. Further, the effectiveness of the proposed OPF model is verified in case studies. The numerical results demonstrate that the BFM-based OPF is a feasible and promising approach for Bi-DCDNs.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"944-948"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748589","citationCount":"0","resultStr":"{\"title\":\"Optimal Power Flow Based on Branch Flow Model for Bipolar DC Distribution Networks\",\"authors\":\"Yiyao Zhou;Qianggang Wang;Xiaolong Xu;Tao Huang;Jianquan Liao;Yuan Chi;Xuefei Zhang;Niancheng Zhou\",\"doi\":\"10.17775/CSEEJPES.2023.08530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal Power Flow (OPF) plays a crucial role in optimization and operation of the bipolar DC distribution network (Bi-DCDN). However, existing OPF models encounter difficulties in the power optimization of Bi-DCDNs due to the optimal power expressed as a product form, i.e., the product of voltage and current. Hence, this brief formulates the OPF problem of Bi-DCDNs using the branch flow model (BFM). The BFM employs power, instead of current, to account for the unique structure of Bi-DCDNs. Convex relaxation and linear approximation are sequentially applied to reformulate the BFM-based OPF, presenting it as a second-order cone programming (SOCP) problem. Further, the effectiveness of the proposed OPF model is verified in case studies. The numerical results demonstrate that the BFM-based OPF is a feasible and promising approach for Bi-DCDNs.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"11 2\",\"pages\":\"944-948\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748589\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748589/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10748589/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

最优潮流(OPF)在双极直流配电网(Bi-DCDN)优化和运行中起着至关重要的作用。然而,现有的OPF模型在bi - dcdn的功率优化中遇到了困难,因为最优功率以产品形式表示,即电压与电流的乘积。因此,本文简要地利用分支流模型(BFM)阐述了bi - dcdn的OPF问题。BFM使用功率而不是电流来解释bi - dcdn的独特结构。采用凸松弛法和线性逼近法对基于bfm的OPF进行重新表述,将其表现为二阶锥规划问题。通过实例验证了所提出的OPF模型的有效性。数值结果表明,基于bfm的OPF是一种可行且有前景的双dcdn方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Power Flow Based on Branch Flow Model for Bipolar DC Distribution Networks
Optimal Power Flow (OPF) plays a crucial role in optimization and operation of the bipolar DC distribution network (Bi-DCDN). However, existing OPF models encounter difficulties in the power optimization of Bi-DCDNs due to the optimal power expressed as a product form, i.e., the product of voltage and current. Hence, this brief formulates the OPF problem of Bi-DCDNs using the branch flow model (BFM). The BFM employs power, instead of current, to account for the unique structure of Bi-DCDNs. Convex relaxation and linear approximation are sequentially applied to reformulate the BFM-based OPF, presenting it as a second-order cone programming (SOCP) problem. Further, the effectiveness of the proposed OPF model is verified in case studies. The numerical results demonstrate that the BFM-based OPF is a feasible and promising approach for Bi-DCDNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信