{"title":"Energy-based Directional Pilot Protection for Distribution Networks with IBDGs Considering Unmeasured Load Switching","authors":"Chenghan Zhou;Guibin Zou;Shuo Zhang;Xuhui Wen","doi":"10.17775/CSEEJPES.2021.09230","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.09230","url":null,"abstract":"Inverter-based distributed generations (IBDGs) are the main approach to utilizing clean energy in distribution networks (DNs). Compared with synchronous source, fault response of IBDG is very different. As a result, in DNs with high penetration of IBDGs, legacy protection schemes will no longer be applicable. In this paper, an energy-based directional pilot protection scheme suitable for DNs with IBDGs is proposed. This scheme considers the large range of phase angle caused by IBDG integration and uses improved energy polarity criterion to determine fault direction. In addition, magnitude of energy is used to distinguish between faults and load switching to overcome maloperation of directional pilot protection caused by internal unmeasured load switching. The proposed scheme first uses local measured information to determine fault direction sign and then exchanges the direction sign with the remote terminal. This scheme does not require high-bandwidth communication and strict data synchronization, so it can be implemented at a low cost. Finally, simulation studies verify effectiveness of the proposed scheme.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"139-150"},"PeriodicalIF":7.1,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10124150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Frequency on Degradation in BOPP Films Under Repetitively Pulsed Voltage","authors":"Chuansheng Zhang;Yu Feng;Fei Kong;Bangdou Huang;Cheng Zhang;Tao Shao","doi":"10.17775/CSEEJPES.2022.07250","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07250","url":null,"abstract":"Operating conditions of film capacitors are complex, and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious. Degradation of the film under repetitively pulsed voltage cannot be accurately evaluated by the average breakdown electric field. In this paper, the effects of pulsed electric field and pulse repetition frequency on the breakdown in biaxially oriented polypropylene (BOPP) films are investigated. Three phases of BOPP degradation are proposed based on the voltage amplitude, i.e., maintenance (M), decline (D), and near-zero (N). Evolution of the BOPP film from degradation to breakdown at different frequencies is presented. Meanwhile, transition of discharge mode and elemental composition of the film are analyzed. Experimental results show continuous heat generation under repetitive microsecond pulses is the dominant factor for degradation of BOPP film. The number of applied pulses and the repetitive stressing time decrease exponentially with increase of frequency. This research can be contributed to the safe and reliable operation of capacitors.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1280-1290"},"PeriodicalIF":7.1,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10124154","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expanding Annular Domain Algorithm to Estimate Domains of Attraction for Power System Stability Analysis","authors":"Yuqing Lin;Tianhao Wen;Yang Liu;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.07620","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07620","url":null,"abstract":"This paper presents an Expanding Annular Domain (EAD) algorithm combined with Sum of Squares (SOS) programming to estimate and maximize the domain of attraction (DA) of power systems. The proposed algorithm can systematically construct polynomial Lyapunov functions for power systems with transfer conductance and reliably determine a less conservative approximated DA, which are quite difficult to achieve with traditional methods. With linear SOS programming, we begin from an initial estimated DA, then enlarge it by iteratively determining a series of so-called annular domains of attraction, each of which is characterized by level sets of two successively obtained Lyapunov functions. Moreover, the EAD algorithm is theoretically analyzed in detail and its validity and convergence are shown under certain conditions. In the end, our method is tested on two classical power system cases and is demonstrated to be superior to existing methods in terms of computational speed and conservativeness of results.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"1925-1934"},"PeriodicalIF":6.9,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10124155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Dong;Mengting Li;Junjie Hu;Sheng Chen;Tao Zhang;Xinying Wang;Tianjiao Pu
{"title":"Hierarchical Game Approach for Optimization of Regional Integrated Energy System Clusters Considering Bounded Rationality","authors":"Lei Dong;Mengting Li;Junjie Hu;Sheng Chen;Tao Zhang;Xinying Wang;Tianjiao Pu","doi":"10.17775/CSEEJPES.2023.02700","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.02700","url":null,"abstract":"Regional integrated energy system (RIES) cluster, i.e., multi-source integration and multi-region coordination, is an effective approach for increasing energy utilization efficiency. The hierarchical architecture and limited information sharing of RIES cluster make it difficult for traditional game theory to accurately describe their game behavior. Thus, a hierarchical game approach considering bounded rationality is proposed in this paper to balance the interests of optimizing RIES cluster under privacy protection. A Stackelberg game with the cluster operator (CO) as the leader and multiple RIES as followers is developed to simultaneously optimize leader benefit and RIES utilization efficiency. Concurrently, a slight altruistic function is introduced to simulate the game behavior of each RIES agent on whether to cooperate or not. By introducing an evolutionary game based on bounded rationality in the lower layer, the flaw of the assumption that participants are completely rational can be avoided. Specially, for autonomous optimal dispatching, each RIES is treated as a prosumer, flexibly switching its market participation role to achieve cluster coordination optimization. Case studies on a RIES cluster verify effectiveness of the proposed approach.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"302-313"},"PeriodicalIF":7.1,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10124156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy-Function Based Pilot Protection Scheme for Hybrid UHVDC Transmission Applying Improved Hausdorff Distance","authors":"Zijiang Wang;Youping Fan;Ben Shang;Yinbiao Shu","doi":"10.17775/CSEEJPES.2022.01330","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.01330","url":null,"abstract":"A hybrid UHVDC transmission system applying LCC as the rectifier and MMC as the inverter combines the advantages of both converter types, which makes this protection scheme more complicated. A new pilot protection scheme for a three-terminal hybrid DC transmission system applying energy functions is proposed. The energy function for LCC is applied to MMC to derive the energy level of the hybrid system. Furthermore, an improved Hausdorff distance (IHD) algorithm is proposed to detect the difference in energy levels between the normal and fault states. An abrupt change in energy level is characterized by IHD change rate. Time points at which the IHD change rate exceeds the threshold at converter stations are applied to determine the fault line and to estimate the fault section. The proposed protection scheme is then verified by a simulation model of the Wudongde ±800 kV three-terminal hybrid UHVDC transmission project. The appropriate sampling frequency is selected for a real-time calculation, and the threshold is selected considering the effect of noise. Results show the proposed scheme can identify and trip fault lines quickly and effectively, even for a 600 Ω grounding fault. Other waveshape similarity algorithms are compared and analyzed. Compared with existing protection schemes, the proposed scheme transmits less data to improve communication speed and reliability.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"891-902"},"PeriodicalIF":7.1,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058878","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hierarchical Control Strategy for Load Regulation Based on Stackelberg Game Theory Considering Randomness","authors":"Tingyu Jiang;Ping Ju;C. Y. Chung;Yuzhong Gong","doi":"10.17775/CSEEJPES.2021.04140","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.04140","url":null,"abstract":"Demand response has been recognized as a valuable functionality of power systems for mitigating power imbalances. This paper proposes a hierarchical control strategy among the distribution system operator (DSO), load aggregators (LAs), and thermostatically controlled loads (TCLs); the strategy includes a scheduling layer and an executive layer to provide load regulation. In the scheduling layer, the DSO (leader) offers compensation price (CP) strategies, and the LAs (followers) respond to CP strategies with available regulation power (ARP) strategies. Profits of the DSO and LAs are modeled according to their behaviors during the load regulation process. Stackelberg game is adopted to capture interactions among the players and leader and to obtain the optimal strategy for each participant to achieve utility. Moreover, considering inevitable random factors in practice, e.g., renewable generation and behavior of users, two different stochastic models based on sample average approximation (SAA) and parameter modification are formulated with improved scheduling accuracy. In the executive layer, distributed TCLs are triggered based on strategies determined in the scheduling layer. A self-triggering method that does not violate user privacy is presented, where TCLs receive external signals from the LA and independently determine whether to alter their operation statuses. Numerical simulations are performed on the modified IEEE-24 bus system to verify effectiveness of the proposed strategy.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"929-941"},"PeriodicalIF":7.1,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058857","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaocong Wu;Geng Chen;Yuming Shao;Hao Xu;Xuanning Zhang;Yanyu Liang;Youping Tu
{"title":"Charge Accumulation Characteristics of SF6-Epoxy Interface Under Negative Repetitive Nanosecond Pulses","authors":"Shaocong Wu;Geng Chen;Yuming Shao;Hao Xu;Xuanning Zhang;Yanyu Liang;Youping Tu","doi":"10.17775/CSEEJPES.2022.04650","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.04650","url":null,"abstract":"Repetitve nanosecond impulses in gas-insulated metal-enclosed switchgear (GIS) are likely to trigger inside flashover. Interface charges on the spacer in GIS are considered one of the main factors damaging insulation performance and may be induced by overvoltage. For good understanding of insulation failures, accumulation characteristics of charges between SF\u0000<inf>6</inf>\u0000 and epoxy spacers under repetitive nanosecond impulses are investigated. It can be found under nanosecond impulses, the charge source in gas volume contributes to interface charge accumulation predominantly. Interface charges will be promoted by impulse number and amplitude. Accumulation processes are analyzed based on runaway electrons mechanism. When impulse amplitude exceeds a threshold value, discharge in the gas volume turns to a runaway mode. A runaway electron leads to the interface charge accumulation. Affected by motion of the runaway electrons, the potential peak gradually moves close to the grounded electrode when impulse amplitude is raised. Meanwhile, increasing impulse number can enhance surface potential. Surface potential will reach saturation eventually. However, memory effect of the repetitive impulse discharge makes the half-peak width of the surface potential at the interface change little. Design of GIS gas-solid insulations can refer to this research.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 4","pages":"1808-1815"},"PeriodicalIF":6.9,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058883","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huadong Sun;Shuyan Wang;Shiyun Xu;Jingtian Bi;Yiming Wang
{"title":"Synchronization Stability Analysis of PLL-Based Grid-Connected VSC System by Voltage Space Vectors","authors":"Huadong Sun;Shuyan Wang;Shiyun Xu;Jingtian Bi;Yiming Wang","doi":"10.17775/CSEEJPES.2022.04450","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.04450","url":null,"abstract":"This paper focuses on synchronization stability analysis of the power system, in which power electronics are synchronized by the phase-locked loop (PLL). It provides new insight into the synchronization stability of power electronics from the voltage perspective. The synchronization stability analysis based on space vector is carried out by establishing a simplified model of the grid-connected voltage source converter (VSC) system. Without complex mathematical calculation, the existence criterion of equilibrium points and the criterion of transient instability dominated by the unstable equilibrium point (UEP) are derived, respectively. With the proposed method, synchronization stability can be determined by the voltage space vectors, which are more observable in potential engineering applications. At the end of this study, the steps of the synchronization stability determination by voltage space vectors are summarized, and the effectiveness and applicability of the proposed method are demonstrated by numerical simulations performed on the PSCAD/EMTDC platform.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2055-2064"},"PeriodicalIF":6.9,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058882","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenming Li;Minghao Wang;Yunfeng Yan;Donglian Qi;Zhao Xu;Jianliang Zhang;Zezhou Wang
{"title":"Tube Model Predictive Control Based Cyber-Attack-Resilient Optimal Voltage Control Strategy in Wind Farms","authors":"Zhenming Li;Minghao Wang;Yunfeng Yan;Donglian Qi;Zhao Xu;Jianliang Zhang;Zezhou Wang","doi":"10.17775/CSEEJPES.2021.09490","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.09490","url":null,"abstract":"Optimal voltage controls have been widely applied in wind farms to maintain voltage stability of power grids. In order to achieve optimal voltage operation, authentic grid information is widely needed in the sensing and actuating processes. However, this may induce system vulnerable to malicious cyber-attacks. To this end, a tube model predictive control-based cyber-attack-resilient optimal voltage control method is proposed to achieve voltage stability against malicious cyber-attacks. The proposed method consists of two cascaded model predictive controllers (MPC), which outperform other peer control methods in effective alleviation of adverse effects from cyber-attacks on actuators and sensors of the system. Finally, efficiency of the proposed method is evaluated in sensor and actuator cyber-attack cases based on a modified IEEE 14 buses system and IEEE 118 buses system.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"530-538"},"PeriodicalIF":7.1,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Security Constrained Distributed Transaction Model for Multiple Prosumers","authors":"Haiteng Han;Sichen Shen;Zhinong Wei;Mohammed Olama;Haixiang Zang;Guoqiang Sun;Yizhou Zhou","doi":"10.17775/CSEEJPES.2022.06950","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.06950","url":null,"abstract":"Massive access of renewable energy has prompted demand-side distributed resources to participate in regulation and improve flexibility of power systems. With large-scale access of massive, decentralized, and diverse distributed resources, demand-side market members have transformed from traditional “consumers” to “prosumers”. To explore the distributed transaction model of prosumers, in this paper, a multi-prosumer distributed transaction model is proposed, and the Conditional Value-at-Risk (CVaR) theory is applied to quantify potential risks caused by the stochastic characteristics inherited from renewable energy. First, a prosumer model under constraints of the distribution network including photovoltaic units, fuel cells, energy storage system, central air conditioning and flexible loads is established, and a multi-prosumer distributed transaction strategy is proposed to achieve power sharing among multiple prosumers. Second, a prosumer transaction model based on CVaR is constructed to measure risks inherited from the uncertainty of PV output within the prosumer and ensure safety of system operation in extreme PV output scenarios. Then, the alternating direction multiplier method (ADMM) is utilized to solve the constructed model efficiently. Finally, distributed transaction costs of prosumers are distributed fairly based on the generalized Nash equilibrium to maximize social benefits. Simulation results show the multi-prosumer distributed transaction mechanism established under the proposed generalized Nash equilibrium method can encourage power sharing among prosumers, increasing their own income and social benefits. Also, the CVaR can assist decision making of prosumers in weighting the risks and benefits, improving system resilience through energy management of prosumers.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"834-843"},"PeriodicalIF":7.1,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10058887","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}