Coordinated Planning of Interconnected Multi-Regional Power Systems Considering Large-Scale Energy Storage Systems, Transmission Expansion, and Carbon Emission Quota Trading
{"title":"Coordinated Planning of Interconnected Multi-Regional Power Systems Considering Large-Scale Energy Storage Systems, Transmission Expansion, and Carbon Emission Quota Trading","authors":"Jia Liu;Biao Jiang;Zao Tang;Pingliang Zeng;Tong Su;Yalou Li;Qiuwei Wu","doi":"10.17775/CSEEJPES.2023.06230","DOIUrl":null,"url":null,"abstract":"Global warming has motivated the world's major countries to actively develop technologies and make policies to promote carbon emission reduction. Focusing on interconnected multi-regional power systems, this paper proposes a coordinated planning model for interconnected power systems considering energy storage system planning and transmission expansion. A market-based carbon emission quota trading market that helps reduce carbon emissions is built and integrated into the coordi-nated planning model, where entities can purchase extra or sell surplus carbon emission quotas. Its effects on promoting carbon emission reduction are analyzed. Considering the limitations on information exchange between interconnected regional power systems, the proposed model is decoupled and solved with the analytical target cascading algorithm. A modified two-region 48-bus system is used to verify the effectiveness of the proposed model and solving method.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"490-502"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838236","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10838236/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming has motivated the world's major countries to actively develop technologies and make policies to promote carbon emission reduction. Focusing on interconnected multi-regional power systems, this paper proposes a coordinated planning model for interconnected power systems considering energy storage system planning and transmission expansion. A market-based carbon emission quota trading market that helps reduce carbon emissions is built and integrated into the coordi-nated planning model, where entities can purchase extra or sell surplus carbon emission quotas. Its effects on promoting carbon emission reduction are analyzed. Considering the limitations on information exchange between interconnected regional power systems, the proposed model is decoupled and solved with the analytical target cascading algorithm. A modified two-region 48-bus system is used to verify the effectiveness of the proposed model and solving method.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.