Proceedings of the American Mathematical Society, Series B最新文献

筛选
英文 中文
Stability phenomena for resonance arrangements 共振排列的稳定性现象
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-11-02 DOI: 10.1090/bproc/71
Eric Ramos, N. Proudfoot
{"title":"Stability phenomena for resonance arrangements","authors":"Eric Ramos, N. Proudfoot","doi":"10.1090/bproc/71","DOIUrl":"https://doi.org/10.1090/bproc/71","url":null,"abstract":"We prove that the ith graded pieces of the Orlik-Solomon algebras or Artinian Orlik-Terao algebras of resonance arrangements form a finitely generated FS^op-module, thus obtaining information about the growth of their dimensions and restrictions on the irreducible representations of symmetric groups that they contain.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"143 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123963055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Loeb extension and Loeb equivalence 勒布扩展和勒布等价
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-10-05 DOI: 10.1090/bproc/78
R. Anderson, Haosui Duanmu, David Schrittesser, W. Weiss
{"title":"Loeb extension and Loeb equivalence","authors":"R. Anderson, Haosui Duanmu, David Schrittesser, W. Weiss","doi":"10.1090/bproc/78","DOIUrl":"https://doi.org/10.1090/bproc/78","url":null,"abstract":"In [J. London Math. Soc. 69 (2004), pp. 258–272] Keisler and Sun leave open several questions regarding Loeb equivalence between internal probability spaces; specifically, whether under certain conditions, the Loeb measure construction applied to two such spaces gives rise to the same measure. We present answers to two of these questions, by giving two examples of probability spaces. Moreover, we reduce their third question to the following: Is the internal algebra generated by the union of two Loeb equivalent internal algebras a subset of their common Loeb extension? We also present a sufficient condition for a positive answer to this question.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115330839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The two-sided Pompeiu problem for discrete groups 离散群的双面庞培问题
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-09-28 DOI: 10.1090/bproc/124
P. Linnell, M. Puls
{"title":"The two-sided Pompeiu problem for discrete groups","authors":"P. Linnell, M. Puls","doi":"10.1090/bproc/124","DOIUrl":"https://doi.org/10.1090/bproc/124","url":null,"abstract":"<p>We consider a two-sided Pompeiu type problem for a discrete group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We give necessary and sufficient conditions for a finite subset <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to have the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F left-parenthesis upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {F}(G)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Pompeiu property. Using group von Neumann algebra techniques, we give necessary and sufficient conditions for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to be an <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l squared left-parenthesis upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ell ^2(G)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Pompeiu group.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127641156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential Brauer monoids 微分Brauer monoids
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-09-09 DOI: 10.1090/bproc/162
A. Magid
{"title":"Differential Brauer monoids","authors":"A. Magid","doi":"10.1090/bproc/162","DOIUrl":"https://doi.org/10.1090/bproc/162","url":null,"abstract":"The differential Brauer monoid of a differential commutative ring \u0000\u0000 \u0000 R\u0000 R\u0000 \u0000\u0000 is defined. Its elements are the isomorphism classes of differential Azumaya \u0000\u0000 \u0000 R\u0000 R\u0000 \u0000\u0000 algebras with operation from tensor product subject to the relation that two such algebras are equivalent if matrix algebras over them, with entry-wise differentiation, are differentially isomorphic. The fine Bauer monoid, which is a group, is the same thing without the differential requirement. The differential Brauer monoid is then determined from the fine Brauer monoids of \u0000\u0000 \u0000 R\u0000 R\u0000 \u0000\u0000 and \u0000\u0000 \u0000 \u0000 R\u0000 D\u0000 \u0000 R^D\u0000 \u0000\u0000 and the submonoid of the Brauer monoid whose underlying Azumaya algebras are matrix rings.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114506818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Interpolation in model spaces 模型空间内插
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-09-03 DOI: 10.1090/bproc/59
P. Gorkin, B. Wick
{"title":"Interpolation in model spaces","authors":"P. Gorkin, B. Wick","doi":"10.1090/bproc/59","DOIUrl":"https://doi.org/10.1090/bproc/59","url":null,"abstract":"In this paper we consider interpolation in model spaces, $H^2 ominus B H^2$ with $B$ a Blaschke product. We study unions of interpolating sequences for two sequences that are far from each other in the pseudohyperbolic metric as well as two sequences that are close to each other in the pseudohyperbolic metric. The paper concludes with a discussion of the behavior of Frostman sequences under perturbations.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122723323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The product formula for regularized Fredholm determinants 正则化Fredholm行列式的乘积公式
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-07-25 DOI: 10.1090/BPROC/70
Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin
{"title":"The product formula for regularized Fredholm determinants","authors":"Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin","doi":"10.1090/BPROC/70","DOIUrl":"https://doi.org/10.1090/BPROC/70","url":null,"abstract":"For trace class operators $A, B in mathcal{B}_1(mathcal{H})$ ($mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form [ {det}_{mathcal{H}} ((I_{mathcal{H}} - A) (I_{mathcal{H}} - B)) = {det}_{mathcal{H}} (I_{mathcal{H}} - A) {det}_{mathcal{H}} (I_{mathcal{H}} - B). ] When trace class operators are replaced by Hilbert--Schmidt operators $A, B in mathcal{B}_2(mathcal{H})$ and the Fredholm determinant ${det}_{mathcal{H}}(I_{mathcal{H}} - A)$, $A in mathcal{B}_1(mathcal{H})$, by the 2nd regularized Fredholm determinant ${det}_{mathcal{H},2}(I_{mathcal{H}} - A) = {det}_{mathcal{H}} ((I_{mathcal{H}} - A) exp(A))$, $A in mathcal{B}_2(mathcal{H})$, the product formula must be replaced by [ {det}_{mathcal{H},2} ((I_{mathcal{H}} - A) (I_{mathcal{H}} - B)) = {det}_{mathcal{H},2} (I_{mathcal{H}} - A) {det}_{mathcal{H},2} (I_{mathcal{H}} - B) exp(- {rm tr}(AB)). ] The product formula for the case of higher regularized Fredholm determinants ${det}_{mathcal{H},k}(I_{mathcal{H}} - A)$, $A in mathcal{B}_k(mathcal{H})$, $k in mathbb{N}$, $k geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116765260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures 阿贝尔映射,双斜撑和Hopf-Galois结构的对偶
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-07-17 DOI: 10.1090/BPROC/87
Alan Koch
{"title":"Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures","authors":"Alan Koch","doi":"10.1090/BPROC/87","DOIUrl":"https://doi.org/10.1090/BPROC/87","url":null,"abstract":"Let \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000 be a finite nonabelian group, and let \u0000\u0000 \u0000 \u0000 ψ\u0000 :\u0000 G\u0000 →\u0000 G\u0000 \u0000 psi :Gto G\u0000 \u0000\u0000 be a homomorphism with abelian image. We show how \u0000\u0000 \u0000 ψ\u0000 psi\u0000 \u0000\u0000 gives rise to two Hopf-Galois structures on a Galois extension \u0000\u0000 \u0000 \u0000 L\u0000 \u0000 /\u0000 \u0000 K\u0000 \u0000 L/K\u0000 \u0000\u0000 with Galois group (isomorphic to) \u0000\u0000 \u0000 G\u0000 G\u0000 \u0000\u0000; one of these structures generalizes the construction given by a “fixed point free abelian endomorphism” introduced by Childs in 2013. We construct the skew left brace corresponding to each of the two Hopf-Galois structures above. We will show that one of the skew left braces is in fact a bi-skew brace, allowing us to obtain four set-theoretic solutions to the Yang-Baxter equation as well as a pair of Hopf-Galois structures on a (potentially) different finite Galois extension.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134547286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Bounded complexes of permutation modules 置换模的有界复形
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-07-09 DOI: 10.1090/bproc/102
D. Benson, J. Carlson
{"title":"Bounded complexes of permutation modules","authors":"D. Benson, J. Carlson","doi":"10.1090/bproc/102","DOIUrl":"https://doi.org/10.1090/bproc/102","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a field of characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p > 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. For <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> an elementary abelian <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-group, there exist collections of permutation modules such that if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is any exact bounded complex whose terms are sums of copies of modules from the collection, then <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is contractible. A consequence is that if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is any finite group whose Sylow <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-subgroups are not cyclic or quaternion, and if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\u0000 <mml:semantics>\u0000 <mml:","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123748095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Amplified graph C*-algebras II: Reconstruction 放大图C*-代数II:重构
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-07-02 DOI: 10.1090/bproc/112
S. Eilers, Efren Ruiz, A. Sims
{"title":"Amplified graph C*-algebras II: Reconstruction","authors":"S. Eilers, Efren Ruiz, A. Sims","doi":"10.1090/bproc/112","DOIUrl":"https://doi.org/10.1090/bproc/112","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a countable directed graph that is amplified in the sense that whenever there is an edge from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\u0000 <mml:semantics>\u0000 <mml:mi>v</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w\">\u0000 <mml:semantics>\u0000 <mml:mi>w</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">w</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, there are infinitely many edges from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\u0000 <mml:semantics>\u0000 <mml:mi>v</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w\">\u0000 <mml:semantics>\u0000 <mml:mi>w</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">w</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. We show that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\u0000 <mml:semantics>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> can be recovered from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk Baseline left-parenthesis upper E right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">C^*(E)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> together with its canonical gauge-action, and also from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript double-struck upper K Baseline left-parenthesis upper E right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">K</mml:mi>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>E</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132616950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
On a quaternionic Picard theorem 关于四元数皮卡德定理
Proceedings of the American Mathematical Society, Series B Pub Date : 2020-06-27 DOI: 10.1090/bproc/54
C. Bisi, J. Winkelmann
{"title":"On a quaternionic Picard theorem","authors":"C. Bisi, J. Winkelmann","doi":"10.1090/bproc/54","DOIUrl":"https://doi.org/10.1090/bproc/54","url":null,"abstract":"<p>The classical theorem of Picard states that a non-constant holomorphic function <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon double-struck upper C right-arrow double-struck upper C\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo>:</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">f:mathbb {C}to mathbb {C}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> can avoid at most one value.</p>\u0000\u0000<p>We investigate how many values a non-constant slice regular function of a quaternionic variable <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon double-struck upper H right-arrow double-struck upper H\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo>:</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">H</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">H</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">f:mathbb {H}to mathbb {H}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> may avoid.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114673829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信