{"title":"Amplified graph C*-algebras II: Reconstruction","authors":"S. Eilers, Efren Ruiz, A. Sims","doi":"10.1090/bproc/112","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a countable directed graph that is amplified in the sense that whenever there is an edge from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w\">\n <mml:semantics>\n <mml:mi>w</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">w</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there are infinitely many edges from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w\">\n <mml:semantics>\n <mml:mi>w</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">w</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be recovered from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk Baseline left-parenthesis upper E right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C^*(E)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> together with its canonical gauge-action, and also from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript double-struck upper K Baseline left-parenthesis upper E right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">K</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L_\\mathbb {K}(E)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> together with its canonical grading.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Let EE be a countable directed graph that is amplified in the sense that whenever there is an edge from vv to ww, there are infinitely many edges from vv to ww. We show that EE can be recovered from C∗(E)C^*(E) together with its canonical gauge-action, and also from LK(E)L_\mathbb {K}(E) together with its canonical grading.