Proceedings of the American Mathematical Society, Series B最新文献

筛选
英文 中文
The strong Lefschetz property for quadratic reverse lexicographic ideals 二次反向词典理想的强列夫谢茨性质
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-07-11 DOI: 10.1090/bproc/234
Filip Jonsson Kling
{"title":"The strong Lefschetz property for quadratic reverse lexicographic ideals","authors":"Filip Jonsson Kling","doi":"10.1090/bproc/234","DOIUrl":"https://doi.org/10.1090/bproc/234","url":null,"abstract":"<p>Consider ideals <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\u0000 <mml:semantics>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the form <disp-formula content-type=\"math/mathml\">\u0000[\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I equals left-parenthesis x 1 squared comma ellipsis comma x Subscript n Superscript 2 Baseline right-parenthesis plus upper R upper L e x left-parenthesis x Subscript i Baseline x Subscript j Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>I</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msubsup>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msubsup>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mo>…</mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msubsup>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msubsup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>RLex</mml:mi>\u0000 <mml:mo>⁡</mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>i</mml:mi>\u0000 </mml:msub>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>j</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">I=(x_1^2,dots , x_n^2)+operatorname {RLex}(x_ix_j)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000]\u0000</disp-formula> where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R upper L e x left-parenthesis x Subscript i Baseline x Subscript j Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>RLex</mml:mi>\u0000 <mml:mo>⁡</mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>i</mml:mi>\u0000 </mml:msub>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>j</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {RLex}(x_ix_j)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is the ideal generated by all the square-free monomials which are greater than or equal to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x Subscript i Baseline x Subscript j\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>i</mml:mi>\u0000 </mml:msub>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>j</mml:mi>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">x_ix_j</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the reverse lexicographic o","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"90 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141657642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new proof of the Gagliardo–Nirenberg and Sobolev inequalities: Heat semigroup approach Gagliardo-Nirenberg 和 Sobolev 不等式的新证明:热半群方法
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-07-11 DOI: 10.1090/bproc/211
Tohru Ozawa, Taiki Takeuchi
{"title":"A new proof of the Gagliardo–Nirenberg and Sobolev inequalities: Heat semigroup approach","authors":"Tohru Ozawa, Taiki Takeuchi","doi":"10.1090/bproc/211","DOIUrl":"https://doi.org/10.1090/bproc/211","url":null,"abstract":"We give a new proof of the Gagliardo–Nirenberg and Sobolev inequalities based on the heat semigroup. Concerning the Gagliardo–Nirenberg inequality, we simplify the previous proof by relying only on the \u0000\u0000 \u0000 \u0000 L\u0000 p\u0000 \u0000 L^p\u0000 \u0000\u0000-\u0000\u0000 \u0000 \u0000 L\u0000 q\u0000 \u0000 L^q\u0000 \u0000\u0000 estimate of the heat semigroup. For the Sobolev inequality, we consider another approach by using the heat semigroup and the Hardy inequality.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"113 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141657167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonergodicity of the geodesic flow on a special class of Cantor tree surfaces 一类特殊康托树表面上大地流的非极性
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-07-01 DOI: 10.1090/bproc/228
Michael Pandazis
{"title":"Nonergodicity of the geodesic flow on a special class of Cantor tree surfaces","authors":"Michael Pandazis","doi":"10.1090/bproc/228","DOIUrl":"https://doi.org/10.1090/bproc/228","url":null,"abstract":"A Riemann surface equipped with its conformal hyperbolic metric is parabolic if and only if the geodesic flow on its unit tangent bundle is ergodic. Let \u0000\u0000 \u0000 X\u0000 X\u0000 \u0000\u0000 be a Cantor tree or a blooming Cantor tree Riemann surface. Fix a geodesic pants decomposition of \u0000\u0000 \u0000 X\u0000 X\u0000 \u0000\u0000 and call the boundary geodesics in the decomposition cuffs. Basmajian, Hakobyan, and Šarić proved that if the lengths of cuffs are rapidly converging to zero, then \u0000\u0000 \u0000 X\u0000 X\u0000 \u0000\u0000 is parabolic. More recently, Šarić proved a slightly slower convergence of lengths of cuffs to zero implies \u0000\u0000 \u0000 X\u0000 X\u0000 \u0000\u0000 is not parabolic. In this paper, we interpolate between the two rates of convergence of the cuffs to zero and find that these surfaces are not parabolic, thus completing the picture.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"65 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit bounds on the coefficients of modular polynomials for the elliptic 𝑗-invariant 椭圆𝑗不变式的模态多项式系数的明确界限
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-07-01 DOI: 10.1090/bproc/179
Florian Breuer, Fabien Pazuki
{"title":"Explicit bounds on the coefficients of modular polynomials for the elliptic 𝑗-invariant","authors":"Florian Breuer, Fabien Pazuki","doi":"10.1090/bproc/179","DOIUrl":"https://doi.org/10.1090/bproc/179","url":null,"abstract":"<p>We obtain an explicit upper bound on the size of the coefficients of the elliptic modular polynomials <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript upper N\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi mathvariant=\"normal\">Φ</mml:mi>\u0000 <mml:mi>N</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">Phi _N</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for any <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:mo>≥</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Ngeq 1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. These polynomials vanish at pairs of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\">\u0000 <mml:semantics>\u0000 <mml:mi>j</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">j</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-invariants of elliptic curves linked by cyclic isogenies of degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\u0000 <mml:semantics>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The main term in the bound is asymptotically optimal as <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\u0000 <mml:semantics>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> tends to infinity.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"42 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonexistence of nontrivial solutions to Kirchhoff-like equations 类似基尔霍夫方程的非微观解的不存在性
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-07-01 DOI: 10.1090/bproc/224
Christopher Goodrich
{"title":"Nonexistence of nontrivial solutions to Kirchhoff-like equations","authors":"Christopher Goodrich","doi":"10.1090/bproc/224","DOIUrl":"https://doi.org/10.1090/bproc/224","url":null,"abstract":"<p>Subject to given boundary data, nonexistence of solution to the one-dimensional Kirchhoff-like equation <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus upper M left-parenthesis left-parenthesis a asterisk StartAbsoluteValue u EndAbsoluteValue Superscript q Baseline right-parenthesis left-parenthesis 1 right-parenthesis right-parenthesis u left-parenthesis t right-parenthesis equals lamda f left-parenthesis t comma u left-parenthesis t right-parenthesis right-parenthesis comma 0 greater-than t greater-than 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>−</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mi>a</mml:mi>\u0000 <mml:mo>∗</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>q</mml:mi>\u0000 </mml:msup>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>λ</mml:mi>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mtext> </mml:mtext>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">begin{equation*} -MBig (big (a*|u|^qbig )(1)Big )u(t)=lambda fbig (t,u(t)big ), 0>t>1 end{equation*}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</dis","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"87 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141699361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examples of étale extensions of Green functors 格林函数的埃塔尔扩展实例
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-07-01 DOI: 10.1090/bproc/189
A. Lindenstrauss, Birgit Richter, Foling Zou
{"title":"Examples of étale extensions of Green functors","authors":"A. Lindenstrauss, Birgit Richter, Foling Zou","doi":"10.1090/bproc/189","DOIUrl":"https://doi.org/10.1090/bproc/189","url":null,"abstract":"<p>We provide new examples of étale extensions of Green functors by transferring classical examples of étale extensions to the equivariant setting. Our examples are Tambara functors, and we prove Green étaleness for them, which implies Tambara étaleness. We show that every <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">C_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Galois extensions of fields gives rise to an étale extension of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 2\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">C_2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Green functors. Here we associate the constant Tambara functor to the base field and the fix-Tambara functor to the extension. We also prove that all <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript n\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">C_n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Kummer extensions give rise to étale extensions for arbitrary finite <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Étale extensions of fields induce étale extension of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Green functors for any finite group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> by passing to the corresponding constant <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Tambara functors.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"74 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141714856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Characters of logarithmic vertex operator algebras and coloured invariants of torus links 对数顶点算子代数的字符和环状链路的彩色不变式
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-06-04 DOI: 10.1090/bproc/223
S. Kanade
{"title":"Characters of logarithmic vertex operator algebras and coloured invariants of torus links","authors":"S. Kanade","doi":"10.1090/bproc/223","DOIUrl":"https://doi.org/10.1090/bproc/223","url":null,"abstract":"<p>We show that the characters of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German s German l Subscript r\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"fraktur\">s</mml:mi>\u0000 <mml:mi mathvariant=\"fraktur\">l</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>r</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathfrak {sl}_r</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> versions of the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1 comma p right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(1,p)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> singlet and the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1 comma p right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(1,p)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> triplet vertex operator algebras arise as limits of appropriately coloured <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German s German l Subscript r\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"fraktur\">s</mml:mi>\u0000 <mml:mi mathvariant=\"fraktur\">l</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>r</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathfrak {sl}_r</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> Jones invariants of certain torus links.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"2 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holomorphic support functions for uniformly pseudoconvex hypersurfaces, with an application to CR maps 均匀伪凸超曲面的全态支持函数,以及对 CR 地图的应用
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-06-04 DOI: 10.1090/bproc/222
Josef Greilhuber
{"title":"Holomorphic support functions for uniformly pseudoconvex hypersurfaces, with an application to CR maps","authors":"Josef Greilhuber","doi":"10.1090/bproc/222","DOIUrl":"https://doi.org/10.1090/bproc/222","url":null,"abstract":"We construct holomorphic support functions for smooth weakly pseudoconvex hypersurfaces with Levi form of constant rank. These are then applied to show that formal holomorphic curves which are tangential to infinite order to such a hypersurface must be formally contained in its Levi foliation. As a consequence, we obtain a holomorphic deformation theorem for nowhere smooth CR maps into smooth pseudoconvex hypersurfaces with one-dimensional Levi foliation, strengthening a very general result of Lamel and Mir about formal deformations in this particular case.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the (6,4)-problem of Brown, Erdős, and Sós 关于布朗、厄尔多斯和索斯的 (6,4)- 问题
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-06-04 DOI: 10.1090/bproc/170
Stefan Glock, Felix Joos, Jaehoon Kim, Marcus Kühn, Lyuben Lichev, Oleg Pikhurko
{"title":"On the (6,4)-problem of Brown, Erdős, and Sós","authors":"Stefan Glock, Felix Joos, Jaehoon Kim, Marcus Kühn, Lyuben Lichev, Oleg Pikhurko","doi":"10.1090/bproc/170","DOIUrl":"https://doi.org/10.1090/bproc/170","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f Superscript left-parenthesis r right-parenthesis Baseline left-parenthesis n semicolon s comma k right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>;</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">f^{(r)}(n;s,k)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be the maximum number of edges of an <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\u0000 <mml:semantics>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-uniform hypergraph on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> vertices not containing a subgraph with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> edges and at most <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s\">\u0000 <mml:semantics>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">s</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> vertices. In 1973, Brown, Erdős, and Sós conjectured that the limit <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"limit Underscript n right-arrow normal infinity Endscripts n Superscript negative 2 f Superscript left-parenthesis 3 right-parenthesis Baseline left-parenthesis n semicolon k plus 2 comma k right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:munder>\u0000 <mml:mo movablelimits=\"true\" form=\"prefix\">lim</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo stretchy=\"false\">→</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∞</mml:mi>\u0000 </mml:mrow>\u0000 </mml:munder>\u0000 <mml:msup>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>−</mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:msup>\u0000 <mml:mi","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"87 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completely continuous multilinear mappings on 𝐿₁ 𝐿₁上的完全连续多线性插值
Proceedings of the American Mathematical Society, Series B Pub Date : 2024-05-15 DOI: 10.1090/bproc/213
Raffaella Cilia, Joaquín Gutiérrez
{"title":"Completely continuous multilinear mappings on 𝐿₁","authors":"Raffaella Cilia, Joaquín Gutiérrez","doi":"10.1090/bproc/213","DOIUrl":"https://doi.org/10.1090/bproc/213","url":null,"abstract":"<p>A useful result of H. Rosenthal and J. Bourgain states that, given a Banach space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, an operator <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T colon upper L 1 left-bracket 0 comma 1 right-bracket right-arrow upper X\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mo>:</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo stretchy=\"false\">→</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">T:L_1[0,1]to X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is completely continuous if and only if its composition with the natural inclusion <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i Subscript normal infinity Baseline colon upper L Subscript normal infinity Baseline left-bracket 0 comma 1 right-bracket right-arrow upper L 1 left-bracket 0 comma 1 right-bracket\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>i</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>:</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 <mml:mo stretchy=\"false\">→</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">i_infty :L_infty [0,1] to L_1[0,1]</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is compact. We extend this result to multilinear mappings on products of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L 1 left-bracket 0 comma 1 right-bracket\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mo stretchy=\"false\">]</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L_1[0,1]</mml:annotation>\u0000 </mml:seman","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"136 38","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信