均匀伪凸超曲面的全态支持函数,以及对 CR 地图的应用

Josef Greilhuber
{"title":"均匀伪凸超曲面的全态支持函数,以及对 CR 地图的应用","authors":"Josef Greilhuber","doi":"10.1090/bproc/222","DOIUrl":null,"url":null,"abstract":"We construct holomorphic support functions for smooth weakly pseudoconvex hypersurfaces with Levi form of constant rank. These are then applied to show that formal holomorphic curves which are tangential to infinite order to such a hypersurface must be formally contained in its Levi foliation. As a consequence, we obtain a holomorphic deformation theorem for nowhere smooth CR maps into smooth pseudoconvex hypersurfaces with one-dimensional Levi foliation, strengthening a very general result of Lamel and Mir about formal deformations in this particular case.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic support functions for uniformly pseudoconvex hypersurfaces, with an application to CR maps\",\"authors\":\"Josef Greilhuber\",\"doi\":\"10.1090/bproc/222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct holomorphic support functions for smooth weakly pseudoconvex hypersurfaces with Levi form of constant rank. These are then applied to show that formal holomorphic curves which are tangential to infinite order to such a hypersurface must be formally contained in its Levi foliation. As a consequence, we obtain a holomorphic deformation theorem for nowhere smooth CR maps into smooth pseudoconvex hypersurfaces with one-dimensional Levi foliation, strengthening a very general result of Lamel and Mir about formal deformations in this particular case.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为具有恒等阶 Levi 形式的光滑弱假凸超曲面构建了全形支撑函数。然后,我们应用这些函数来证明,与这样的超曲面无限阶相切的形式全形曲线必须形式上包含在它的 Levi 折叠中。因此,我们得到了无处光滑 CR 映射到具有一维 Levi 叶形的光滑伪凸超曲面的全形变换定理,加强了 Lamel 和 Mir 关于这种特殊情况下形式变形的一个非常普遍的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic support functions for uniformly pseudoconvex hypersurfaces, with an application to CR maps
We construct holomorphic support functions for smooth weakly pseudoconvex hypersurfaces with Levi form of constant rank. These are then applied to show that formal holomorphic curves which are tangential to infinite order to such a hypersurface must be formally contained in its Levi foliation. As a consequence, we obtain a holomorphic deformation theorem for nowhere smooth CR maps into smooth pseudoconvex hypersurfaces with one-dimensional Levi foliation, strengthening a very general result of Lamel and Mir about formal deformations in this particular case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信