{"title":"Gagliardo-Nirenberg 和 Sobolev 不等式的新证明:热半群方法","authors":"Tohru Ozawa, Taiki Takeuchi","doi":"10.1090/bproc/211","DOIUrl":null,"url":null,"abstract":"We give a new proof of the Gagliardo–Nirenberg and Sobolev inequalities based on the heat semigroup. Concerning the Gagliardo–Nirenberg inequality, we simplify the previous proof by relying only on the \n\n \n \n L\n p\n \n L^p\n \n\n-\n\n \n \n L\n q\n \n L^q\n \n\n estimate of the heat semigroup. For the Sobolev inequality, we consider another approach by using the heat semigroup and the Hardy inequality.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"113 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new proof of the Gagliardo–Nirenberg and Sobolev inequalities: Heat semigroup approach\",\"authors\":\"Tohru Ozawa, Taiki Takeuchi\",\"doi\":\"10.1090/bproc/211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new proof of the Gagliardo–Nirenberg and Sobolev inequalities based on the heat semigroup. Concerning the Gagliardo–Nirenberg inequality, we simplify the previous proof by relying only on the \\n\\n \\n \\n L\\n p\\n \\n L^p\\n \\n\\n-\\n\\n \\n \\n L\\n q\\n \\n L^q\\n \\n\\n estimate of the heat semigroup. For the Sobolev inequality, we consider another approach by using the heat semigroup and the Hardy inequality.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"113 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了基于热半群的 Gagliardo-Nirenberg 和 Sobolev 不等式的新证明。关于 Gagliardo-Nirenberg 不等式,我们仅依靠热半群的 L p L^p - L q L^q 估计值简化了之前的证明。对于索博廖夫不等式,我们考虑使用热半群和哈代不等式的另一种方法。
A new proof of the Gagliardo–Nirenberg and Sobolev inequalities: Heat semigroup approach
We give a new proof of the Gagliardo–Nirenberg and Sobolev inequalities based on the heat semigroup. Concerning the Gagliardo–Nirenberg inequality, we simplify the previous proof by relying only on the
L
p
L^p
-
L
q
L^q
estimate of the heat semigroup. For the Sobolev inequality, we consider another approach by using the heat semigroup and the Hardy inequality.