Explicit bounds on the coefficients of modular polynomials for the elliptic 𝑗-invariant

Florian Breuer, Fabien Pazuki
{"title":"Explicit bounds on the coefficients of modular polynomials for the elliptic 𝑗-invariant","authors":"Florian Breuer, Fabien Pazuki","doi":"10.1090/bproc/179","DOIUrl":null,"url":null,"abstract":"<p>We obtain an explicit upper bound on the size of the coefficients of the elliptic modular polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript upper N\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Φ</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Phi _N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>≥</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. These polynomials vanish at pairs of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\">\n <mml:semantics>\n <mml:mi>j</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-invariants of elliptic curves linked by cyclic isogenies of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The main term in the bound is asymptotically optimal as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> tends to infinity.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"42 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain an explicit upper bound on the size of the coefficients of the elliptic modular polynomials Φ N \Phi _N for any N 1 N\geq 1 . These polynomials vanish at pairs of j j -invariants of elliptic curves linked by cyclic isogenies of degree N N . The main term in the bound is asymptotically optimal as N N tends to infinity.

椭圆𝑗不变式的模态多项式系数的明确界限
对于任意 N ≥ 1 N\geq 1,我们得到了椭圆模态多项式 Φ N \Phi _N 的系数大小的明确上限。这些多项式在椭圆曲线的 j j - 变项对上消失,这些变项通过 N N 度的循环同源关系相连。当 N N 趋于无穷大时,约束中的主项是渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信