{"title":"Explicit bounds on the coefficients of modular polynomials for the elliptic 𝑗-invariant","authors":"Florian Breuer, Fabien Pazuki","doi":"10.1090/bproc/179","DOIUrl":null,"url":null,"abstract":"<p>We obtain an explicit upper bound on the size of the coefficients of the elliptic modular polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi Subscript upper N\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Φ</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Phi _N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>≥</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. These polynomials vanish at pairs of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\">\n <mml:semantics>\n <mml:mi>j</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-invariants of elliptic curves linked by cyclic isogenies of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The main term in the bound is asymptotically optimal as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> tends to infinity.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"42 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain an explicit upper bound on the size of the coefficients of the elliptic modular polynomials ΦN\Phi _N for any N≥1N\geq 1. These polynomials vanish at pairs of jj-invariants of elliptic curves linked by cyclic isogenies of degree NN. The main term in the bound is asymptotically optimal as NN tends to infinity.