{"title":"Nonexistence of nontrivial solutions to Kirchhoff-like equations","authors":"Christopher Goodrich","doi":"10.1090/bproc/224","DOIUrl":null,"url":null,"abstract":"<p>Subject to given boundary data, nonexistence of solution to the one-dimensional Kirchhoff-like equation <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus upper M left-parenthesis left-parenthesis a asterisk StartAbsoluteValue u EndAbsoluteValue Superscript q Baseline right-parenthesis left-parenthesis 1 right-parenthesis right-parenthesis u left-parenthesis t right-parenthesis equals lamda f left-parenthesis t comma u left-parenthesis t right-parenthesis right-parenthesis comma 0 greater-than t greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>a</mml:mi>\n <mml:mo>∗</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.623em\" minsize=\"1.623em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>λ</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo>,</mml:mo>\n <mml:mtext> </mml:mtext>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} -M\\Big (\\big (a*|u|^q\\big )(1)\\Big )u(t)=\\lambda f\\big (t,u(t)\\big ),\\ 0>t>1 \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n is considered. In particular, a condition is provided on the parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that for each <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda greater-than lamda 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ</mml:mi>\n <mml:mo>></mml:mo>\n <mml:msub>\n <mml:mi>λ</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda >\\lambda _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda 0\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>λ</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\lambda _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is defined in terms of initial data, the boundary value problem has no nontrivial positive solution.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"87 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Subject to given boundary data, nonexistence of solution to the one-dimensional Kirchhoff-like equation −M((a∗|u|q)(1))u(t)=λf(t,u(t)),0>t>1\begin{equation*} -M\Big (\big (a*|u|^q\big )(1)\Big )u(t)=\lambda f\big (t,u(t)\big ),\ 0>t>1 \end{equation*}
is considered. In particular, a condition is provided on the parameter λ\lambda such that for each λ>λ0\lambda >\lambda _0, where λ0\lambda _0 is defined in terms of initial data, the boundary value problem has no nontrivial positive solution.