{"title":"The strong Lefschetz property for quadratic reverse lexicographic ideals","authors":"Filip Jonsson Kling","doi":"10.1090/bproc/234","DOIUrl":null,"url":null,"abstract":"<p>Consider ideals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the form <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I equals left-parenthesis x 1 squared comma ellipsis comma x Subscript n Superscript 2 Baseline right-parenthesis plus upper R upper L e x left-parenthesis x Subscript i Baseline x Subscript j Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msubsup>\n <mml:mi>x</mml:mi>\n <mml:mn>1</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo>,</mml:mo>\n <mml:mo>…</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>x</mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>RLex</mml:mi>\n <mml:mo></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I=(x_1^2,\\dots , x_n^2)+\\operatorname {RLex}(x_ix_j)</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R upper L e x left-parenthesis x Subscript i Baseline x Subscript j Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>RLex</mml:mi>\n <mml:mo></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {RLex}(x_ix_j)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the ideal generated by all the square-free monomials which are greater than or equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x Subscript i Baseline x Subscript j\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x_ix_j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the reverse lexicographic order. We will determine some interesting properties regarding the shape of the Hilbert series of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Using a theorem of Lindsey [Proc. Amer. Math. Soc. <bold>139</bold> (2011), no. 1, 79–92], this allows for a short proof that any algebra defined by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has the strong Lefschetz property when the underlying field is of characteristic zero. Building on recent work by Phuong and Tran [Colloq. Math. <bold>173</bold> (2023), no. 1, 1–8], this result is then extended to fields of sufficiently high positive characteristic. As a consequence, this shows that for any possible number of minimal generators for an artinian quadratic ideal there exists such an ideal minimally generated by that many monomials and defining an algebra with the strong Lefschetz property.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"90 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Consider ideals II of the form
\[
I=(x12,…,xn2)+RLex(xixj)I=(x_1^2,\dots , x_n^2)+\operatorname {RLex}(x_ix_j)
\]
where RLex(xixj)\operatorname {RLex}(x_ix_j) is the ideal generated by all the square-free monomials which are greater than or equal to xixjx_ix_j in the reverse lexicographic order. We will determine some interesting properties regarding the shape of the Hilbert series of II. Using a theorem of Lindsey [Proc. Amer. Math. Soc. 139 (2011), no. 1, 79–92], this allows for a short proof that any algebra defined by II has the strong Lefschetz property when the underlying field is of characteristic zero. Building on recent work by Phuong and Tran [Colloq. Math. 173 (2023), no. 1, 1–8], this result is then extended to fields of sufficiently high positive characteristic. As a consequence, this shows that for any possible number of minimal generators for an artinian quadratic ideal there exists such an ideal minimally generated by that many monomials and defining an algebra with the strong Lefschetz property.
考虑形式为 I I 的理想[ I = ( x 1 2 , ... , x n 2 ) + RLex ( x i x j ) I=(x_1^2,\dots , x_n^2)+operatorname {RLex}(x_ix_j) \]其中 RLex ( x i x j ) \operatorname {RLex}(x_ix_j) 是由所有大于或等于 x i x j x_ix_j 的无平方单项式按相反的词序生成的理想。我们将确定有关 I I 的希尔伯特级数形状的一些有趣性质。利用林赛的定理[Proc. Amer. Math. Soc. 139 (2011), no.在 Phuong 和 Tran [Colloq. Math. 173 (2023), no.结果表明,对于artinian二次型理想的任何可能最小生成数,都存在这样一个理想,它由这么多单项式最小生成,并定义了一个具有强列夫谢茨性质的代数。