The strong Lefschetz property for quadratic reverse lexicographic ideals

Filip Jonsson Kling
{"title":"The strong Lefschetz property for quadratic reverse lexicographic ideals","authors":"Filip Jonsson Kling","doi":"10.1090/bproc/234","DOIUrl":null,"url":null,"abstract":"<p>Consider ideals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the form <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I equals left-parenthesis x 1 squared comma ellipsis comma x Subscript n Superscript 2 Baseline right-parenthesis plus upper R upper L e x left-parenthesis x Subscript i Baseline x Subscript j Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msubsup>\n <mml:mi>x</mml:mi>\n <mml:mn>1</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo>,</mml:mo>\n <mml:mo>…</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msubsup>\n <mml:mi>x</mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>RLex</mml:mi>\n <mml:mo>⁡</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I=(x_1^2,\\dots , x_n^2)+\\operatorname {RLex}(x_ix_j)</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R upper L e x left-parenthesis x Subscript i Baseline x Subscript j Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>RLex</mml:mi>\n <mml:mo>⁡</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {RLex}(x_ix_j)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the ideal generated by all the square-free monomials which are greater than or equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x Subscript i Baseline x Subscript j\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x_ix_j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the reverse lexicographic order. We will determine some interesting properties regarding the shape of the Hilbert series of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Using a theorem of Lindsey [Proc. Amer. Math. Soc. <bold>139</bold> (2011), no. 1, 79–92], this allows for a short proof that any algebra defined by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has the strong Lefschetz property when the underlying field is of characteristic zero. Building on recent work by Phuong and Tran [Colloq. Math. <bold>173</bold> (2023), no. 1, 1–8], this result is then extended to fields of sufficiently high positive characteristic. As a consequence, this shows that for any possible number of minimal generators for an artinian quadratic ideal there exists such an ideal minimally generated by that many monomials and defining an algebra with the strong Lefschetz property.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"90 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider ideals I I of the form \[ I = ( x 1 2 , , x n 2 ) + RLex ( x i x j ) I=(x_1^2,\dots , x_n^2)+\operatorname {RLex}(x_ix_j) \] where RLex ( x i x j ) \operatorname {RLex}(x_ix_j) is the ideal generated by all the square-free monomials which are greater than or equal to x i x j x_ix_j in the reverse lexicographic order. We will determine some interesting properties regarding the shape of the Hilbert series of I I . Using a theorem of Lindsey [Proc. Amer. Math. Soc. 139 (2011), no. 1, 79–92], this allows for a short proof that any algebra defined by I I has the strong Lefschetz property when the underlying field is of characteristic zero. Building on recent work by Phuong and Tran [Colloq. Math. 173 (2023), no. 1, 1–8], this result is then extended to fields of sufficiently high positive characteristic. As a consequence, this shows that for any possible number of minimal generators for an artinian quadratic ideal there exists such an ideal minimally generated by that many monomials and defining an algebra with the strong Lefschetz property.

二次反向词典理想的强列夫谢茨性质
考虑形式为 I I 的理想[ I = ( x 1 2 , ... , x n 2 ) + RLex ( x i x j ) I=(x_1^2,\dots , x_n^2)+operatorname {RLex}(x_ix_j) \]其中 RLex ( x i x j ) \operatorname {RLex}(x_ix_j) 是由所有大于或等于 x i x j x_ix_j 的无平方单项式按相反的词序生成的理想。我们将确定有关 I I 的希尔伯特级数形状的一些有趣性质。利用林赛的定理[Proc. Amer. Math. Soc. 139 (2011), no.在 Phuong 和 Tran [Colloq. Math. 173 (2023), no.结果表明,对于artinian二次型理想的任何可能最小生成数,都存在这样一个理想,它由这么多单项式最小生成,并定义了一个具有强列夫谢茨性质的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信