Completely continuous multilinear mappings on 𝐿₁

Raffaella Cilia, Joaquín Gutiérrez
{"title":"Completely continuous multilinear mappings on 𝐿₁","authors":"Raffaella Cilia, Joaquín Gutiérrez","doi":"10.1090/bproc/213","DOIUrl":null,"url":null,"abstract":"<p>A useful result of H. Rosenthal and J. Bourgain states that, given a Banach space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, an operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T colon upper L 1 left-bracket 0 comma 1 right-bracket right-arrow upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">→</mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T:L_1[0,1]\\to X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is completely continuous if and only if its composition with the natural inclusion <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i Subscript normal infinity Baseline colon upper L Subscript normal infinity Baseline left-bracket 0 comma 1 right-bracket right-arrow upper L 1 left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>i</mml:mi>\n <mml:mi mathvariant=\"normal\">∞</mml:mi>\n </mml:msub>\n <mml:mo>:</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi mathvariant=\"normal\">∞</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">→</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">i_\\infty :L_\\infty [0,1] \\to L_1[0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is compact. We extend this result to multilinear mappings on products of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L 1 left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L_1[0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> spaces, and consider also the composition with the natural inclusion <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i colon upper C left-bracket 0 comma 1 right-bracket right-arrow upper L 1 left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>i</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>C</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mo stretchy=\"false\">→</mml:mo>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">i:C[0,1]\\to L_1[0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that a multilinear mapping on a product of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L 1 left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L_1[0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> spaces is completely continuous if and only if its associated polymeasure has a relatively norm compact range.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"136 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A useful result of H. Rosenthal and J. Bourgain states that, given a Banach space X X , an operator T : L 1 [ 0 , 1 ] X T:L_1[0,1]\to X is completely continuous if and only if its composition with the natural inclusion i : L [ 0 , 1 ] L 1 [ 0 , 1 ] i_\infty :L_\infty [0,1] \to L_1[0,1] is compact. We extend this result to multilinear mappings on products of L 1 [ 0 , 1 ] L_1[0,1] spaces, and consider also the composition with the natural inclusion i : C [ 0 , 1 ] L 1 [ 0 , 1 ] i:C[0,1]\to L_1[0,1] . We show that a multilinear mapping on a product of L 1 [ 0 , 1 ] L_1[0,1] spaces is completely continuous if and only if its associated polymeasure has a relatively norm compact range.

𝐿₁上的完全连续多线性插值
罗森塔尔(H. Rosenthal)和布尔甘(J. Bourgain)的一个有用结果指出,给定一个巴拿赫空间 X X,当且仅当一个算子 T : L 1 [ 0 , 1 ] → X T:L_1[0,1]\to X 与自然包含 i ∞ : L ∞ [ 0 , 1 ] → L 1 [ 0 , 1 ] i_\infty :L_\infty [0,1] \to L_1[0,1] 的组合是紧凑的时候,这个算子 T 才是完全连续的。我们将这一结果扩展到 L 1 [ 0 , 1 ] L_1[0 , 1] 空间乘积上的多线性变换,并考虑与自然包含 i : C [ 0 , 1 ] → L 1 [ 0 , 1 ] i:C[0 , 1]\to L_1[0 , 1] 的组合。我们证明,L 1 [ 0 , 1 ] L_1[0,1]空间乘积上的多线性映射是完全连续的,当且仅当其相关的多度量具有相对规范紧凑的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信