The product formula for regularized Fredholm determinants

Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin
{"title":"The product formula for regularized Fredholm determinants","authors":"Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin","doi":"10.1090/BPROC/70","DOIUrl":null,"url":null,"abstract":"For trace class operators $A, B \\in \\mathcal{B}_1(\\mathcal{H})$ ($\\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form \\[ {\\det}_{\\mathcal{H}} ((I_{\\mathcal{H}} - A) (I_{\\mathcal{H}} - B)) = {\\det}_{\\mathcal{H}} (I_{\\mathcal{H}} - A) {\\det}_{\\mathcal{H}} (I_{\\mathcal{H}} - B). \\] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \\in \\mathcal{B}_2(\\mathcal{H})$ and the Fredholm determinant ${\\det}_{\\mathcal{H}}(I_{\\mathcal{H}} - A)$, $A \\in \\mathcal{B}_1(\\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\\det}_{\\mathcal{H},2}(I_{\\mathcal{H}} - A) = {\\det}_{\\mathcal{H}} ((I_{\\mathcal{H}} - A) \\exp(A))$, $A \\in \\mathcal{B}_2(\\mathcal{H})$, the product formula must be replaced by \\[ {\\det}_{\\mathcal{H},2} ((I_{\\mathcal{H}} - A) (I_{\\mathcal{H}} - B)) = {\\det}_{\\mathcal{H},2} (I_{\\mathcal{H}} - A) {\\det}_{\\mathcal{H},2} (I_{\\mathcal{H}} - B) \\exp(- {\\rm tr}(AB)). \\] The product formula for the case of higher regularized Fredholm determinants ${\\det}_{\\mathcal{H},k}(I_{\\mathcal{H}} - A)$, $A \\in \\mathcal{B}_k(\\mathcal{H})$, $k \\in \\mathbb{N}$, $k \\geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BPROC/70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For trace class operators $A, B \in \mathcal{B}_1(\mathcal{H})$ ($\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form \[ {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H}} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H}} (I_{\mathcal{H}} - B). \] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \in \mathcal{B}_2(\mathcal{H})$ and the Fredholm determinant ${\det}_{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_1(\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\det}_{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}_2(\mathcal{H})$, the product formula must be replaced by \[ {\det}_{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). \] The product formula for the case of higher regularized Fredholm determinants ${\det}_{\mathcal{H},k}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.
正则化Fredholm行列式的乘积公式
对于跟踪类算子$A, B \in \mathcal{B}_1(\mathcal{H})$ ($\mathcal{H}$一个复的,可分离的希尔伯特空间),Fredholm行列式的乘积公式保持在熟悉的形式\[ {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H}} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H}} (I_{\mathcal{H}} - B). \]当跟踪类算子被Hilbert- Schmidt算子$A, B \in \mathcal{B}_2(\mathcal{H})$和Fredholm行列式${\det}_{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_1(\mathcal{H})$取代时,由第2正则化Fredholm行列式${\det}_{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}_2(\mathcal{H})$,乘积公式必须用\[ {\det}_{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). \]代替更高正则化Fredholm行列式${\det}_{\mathcal{H},k}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$的乘积公式似乎不容易获得,因此本说明旨在填补文献中的这一空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信