Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin
{"title":"正则化Fredholm行列式的乘积公式","authors":"Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin","doi":"10.1090/BPROC/70","DOIUrl":null,"url":null,"abstract":"For trace class operators $A, B \\in \\mathcal{B}_1(\\mathcal{H})$ ($\\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form \\[ {\\det}_{\\mathcal{H}} ((I_{\\mathcal{H}} - A) (I_{\\mathcal{H}} - B)) = {\\det}_{\\mathcal{H}} (I_{\\mathcal{H}} - A) {\\det}_{\\mathcal{H}} (I_{\\mathcal{H}} - B). \\] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \\in \\mathcal{B}_2(\\mathcal{H})$ and the Fredholm determinant ${\\det}_{\\mathcal{H}}(I_{\\mathcal{H}} - A)$, $A \\in \\mathcal{B}_1(\\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\\det}_{\\mathcal{H},2}(I_{\\mathcal{H}} - A) = {\\det}_{\\mathcal{H}} ((I_{\\mathcal{H}} - A) \\exp(A))$, $A \\in \\mathcal{B}_2(\\mathcal{H})$, the product formula must be replaced by \\[ {\\det}_{\\mathcal{H},2} ((I_{\\mathcal{H}} - A) (I_{\\mathcal{H}} - B)) = {\\det}_{\\mathcal{H},2} (I_{\\mathcal{H}} - A) {\\det}_{\\mathcal{H},2} (I_{\\mathcal{H}} - B) \\exp(- {\\rm tr}(AB)). \\] The product formula for the case of higher regularized Fredholm determinants ${\\det}_{\\mathcal{H},k}(I_{\\mathcal{H}} - A)$, $A \\in \\mathcal{B}_k(\\mathcal{H})$, $k \\in \\mathbb{N}$, $k \\geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The product formula for regularized Fredholm determinants\",\"authors\":\"Thomas Britz, A. Carey, F. Gesztesy, Roger Nichols, F. Sukochev, D. Zanin\",\"doi\":\"10.1090/BPROC/70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For trace class operators $A, B \\\\in \\\\mathcal{B}_1(\\\\mathcal{H})$ ($\\\\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form \\\\[ {\\\\det}_{\\\\mathcal{H}} ((I_{\\\\mathcal{H}} - A) (I_{\\\\mathcal{H}} - B)) = {\\\\det}_{\\\\mathcal{H}} (I_{\\\\mathcal{H}} - A) {\\\\det}_{\\\\mathcal{H}} (I_{\\\\mathcal{H}} - B). \\\\] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \\\\in \\\\mathcal{B}_2(\\\\mathcal{H})$ and the Fredholm determinant ${\\\\det}_{\\\\mathcal{H}}(I_{\\\\mathcal{H}} - A)$, $A \\\\in \\\\mathcal{B}_1(\\\\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\\\\det}_{\\\\mathcal{H},2}(I_{\\\\mathcal{H}} - A) = {\\\\det}_{\\\\mathcal{H}} ((I_{\\\\mathcal{H}} - A) \\\\exp(A))$, $A \\\\in \\\\mathcal{B}_2(\\\\mathcal{H})$, the product formula must be replaced by \\\\[ {\\\\det}_{\\\\mathcal{H},2} ((I_{\\\\mathcal{H}} - A) (I_{\\\\mathcal{H}} - B)) = {\\\\det}_{\\\\mathcal{H},2} (I_{\\\\mathcal{H}} - A) {\\\\det}_{\\\\mathcal{H},2} (I_{\\\\mathcal{H}} - B) \\\\exp(- {\\\\rm tr}(AB)). \\\\] The product formula for the case of higher regularized Fredholm determinants ${\\\\det}_{\\\\mathcal{H},k}(I_{\\\\mathcal{H}} - A)$, $A \\\\in \\\\mathcal{B}_k(\\\\mathcal{H})$, $k \\\\in \\\\mathbb{N}$, $k \\\\geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BPROC/70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BPROC/70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
对于跟踪类算子$A, B \in \mathcal{B}_1(\mathcal{H})$ ($\mathcal{H}$一个复的,可分离的希尔伯特空间),Fredholm行列式的乘积公式保持在熟悉的形式\[ {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H}} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H}} (I_{\mathcal{H}} - B). \]当跟踪类算子被Hilbert- Schmidt算子$A, B \in \mathcal{B}_2(\mathcal{H})$和Fredholm行列式${\det}_{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_1(\mathcal{H})$取代时,由第2正则化Fredholm行列式${\det}_{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}_2(\mathcal{H})$,乘积公式必须用\[ {\det}_{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). \]代替更高正则化Fredholm行列式${\det}_{\mathcal{H},k}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$的乘积公式似乎不容易获得,因此本说明旨在填补文献中的这一空白。
The product formula for regularized Fredholm determinants
For trace class operators $A, B \in \mathcal{B}_1(\mathcal{H})$ ($\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form \[ {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H}} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H}} (I_{\mathcal{H}} - B). \] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \in \mathcal{B}_2(\mathcal{H})$ and the Fredholm determinant ${\det}_{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_1(\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\det}_{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}_2(\mathcal{H})$, the product formula must be replaced by \[ {\det}_{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). \] The product formula for the case of higher regularized Fredholm determinants ${\det}_{\mathcal{H},k}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.