{"title":"Bounded complexes of permutation modules","authors":"D. Benson, J. Carlson","doi":"10.1090/bproc/102","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a field of characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> an elementary abelian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-group, there exist collections of permutation modules such that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is any exact bounded complex whose terms are sums of copies of modules from the collection, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is contractible. A consequence is that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is any finite group whose Sylow <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-subgroups are not cyclic or quaternion, and if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a bounded exact complex such that each <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript i\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi>i</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^i</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a direct sum of one dimensional modules and projective modules, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is contractible.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Let kk be a field of characteristic p>0p > 0. For GG an elementary abelian pp-group, there exist collections of permutation modules such that if C∗C^* is any exact bounded complex whose terms are sums of copies of modules from the collection, then C∗C^* is contractible. A consequence is that if GG is any finite group whose Sylow pp-subgroups are not cyclic or quaternion, and if C∗C^* is a bounded exact complex such that each CiC^i is a direct sum of one dimensional modules and projective modules, then C∗C^* is contractible.