阿贝尔映射,双斜撑和Hopf-Galois结构的对偶

Alan Koch
{"title":"阿贝尔映射,双斜撑和Hopf-Galois结构的对偶","authors":"Alan Koch","doi":"10.1090/BPROC/87","DOIUrl":null,"url":null,"abstract":"Let \n\n \n G\n G\n \n\n be a finite nonabelian group, and let \n\n \n \n ψ\n :\n G\n →\n G\n \n \\psi :G\\to G\n \n\n be a homomorphism with abelian image. We show how \n\n \n ψ\n \\psi\n \n\n gives rise to two Hopf-Galois structures on a Galois extension \n\n \n \n L\n \n /\n \n K\n \n L/K\n \n\n with Galois group (isomorphic to) \n\n \n G\n G\n \n\n; one of these structures generalizes the construction given by a “fixed point free abelian endomorphism” introduced by Childs in 2013. We construct the skew left brace corresponding to each of the two Hopf-Galois structures above. We will show that one of the skew left braces is in fact a bi-skew brace, allowing us to obtain four set-theoretic solutions to the Yang-Baxter equation as well as a pair of Hopf-Galois structures on a (potentially) different finite Galois extension.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures\",\"authors\":\"Alan Koch\",\"doi\":\"10.1090/BPROC/87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\n\\n \\n G\\n G\\n \\n\\n be a finite nonabelian group, and let \\n\\n \\n \\n ψ\\n :\\n G\\n →\\n G\\n \\n \\\\psi :G\\\\to G\\n \\n\\n be a homomorphism with abelian image. We show how \\n\\n \\n ψ\\n \\\\psi\\n \\n\\n gives rise to two Hopf-Galois structures on a Galois extension \\n\\n \\n \\n L\\n \\n /\\n \\n K\\n \\n L/K\\n \\n\\n with Galois group (isomorphic to) \\n\\n \\n G\\n G\\n \\n\\n; one of these structures generalizes the construction given by a “fixed point free abelian endomorphism” introduced by Childs in 2013. We construct the skew left brace corresponding to each of the two Hopf-Galois structures above. We will show that one of the skew left braces is in fact a bi-skew brace, allowing us to obtain four set-theoretic solutions to the Yang-Baxter equation as well as a pair of Hopf-Galois structures on a (potentially) different finite Galois extension.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BPROC/87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BPROC/87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

设G G是一个有限非贝尔群,设ψ:G→G\ psi:G\to G是一个与阿贝尔像同态。我们展示了ψ \psi如何在具有伽罗瓦群(同构于)G G的伽罗瓦扩展L/K L/K上产生两个hopf -伽罗瓦结构;其中一种结构推广了Childs在2013年引入的“不动点自由阿贝尔自同态”给出的结构。我们构造了对应于上述两个Hopf-Galois结构的左斜括号。我们将证明其中一个偏左括号实际上是一个双偏左括号,使我们能够获得Yang-Baxter方程的四个集论解以及(可能)不同有限伽罗瓦扩展上的一对Hopf-Galois结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures
Let G G be a finite nonabelian group, and let ψ : G → G \psi :G\to G be a homomorphism with abelian image. We show how ψ \psi gives rise to two Hopf-Galois structures on a Galois extension L / K L/K with Galois group (isomorphic to) G G ; one of these structures generalizes the construction given by a “fixed point free abelian endomorphism” introduced by Childs in 2013. We construct the skew left brace corresponding to each of the two Hopf-Galois structures above. We will show that one of the skew left braces is in fact a bi-skew brace, allowing us to obtain four set-theoretic solutions to the Yang-Baxter equation as well as a pair of Hopf-Galois structures on a (potentially) different finite Galois extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信