Communications Materials最新文献

筛选
英文 中文
Achieving liquid processors by colloidal suspensions for reservoir computing 通过胶体悬浮实现液体处理器,用于水库计算
IF 7.5
Communications Materials Pub Date : 2024-09-28 DOI: 10.1038/s43246-024-00653-7
Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky
{"title":"Achieving liquid processors by colloidal suspensions for reservoir computing","authors":"Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky","doi":"10.1038/s43246-024-00653-7","DOIUrl":"10.1038/s43246-024-00653-7","url":null,"abstract":"The increasing use of machine learning, with its significant computational and environmental costs, has motivated the exploration of unconventional computing substrates. Liquid substrates, such as colloids, are of particular interest due to their ability to conform to various shapes while exhibiting complex dynamics resulting from the collective behaviour of the constituent colloidal particles. This study explores the potential of using a PEDOT:PSS colloidal suspension as a physical reservoir for reservoir computing in spoken digit recognition. Reservoir computing uses high-dimensional dynamical systems to perform tasks with different substrates, including physical ones. Here, a physical reservoir is implemented that encodes temporal data by exploiting the rich dynamics inherent in colloidal suspensions, thus avoiding reliance on conventional computing hardware. The reservoir processes audio input encoded as spike sequences, which are then classified using a trained readout layer to identify spoken digits. Evaluation across different speaker scenarios shows that the colloidal reservoir achieves high accuracy in classification tasks, demonstrating its viability as a physical reservoir substrate. Reservoir computing is a neural network framework suitable for processing temporal and sequential information. Here, a polymeric colloidal suspension is investigated as a physical reservoir for reservoir computing in spoken digit recognition.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00653-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon upconversion crystals doped bacterial cellulose composite films as recyclable photonic bioplastics 作为可回收光子生物塑料的光子上转换晶体掺杂细菌纤维素复合薄膜
IF 7.5
Communications Materials Pub Date : 2024-09-28 DOI: 10.1038/s43246-024-00638-6
Pankaj Bharmoria, Lukas Naimovičius, Deyaa Abol-Fotouh, Mila Miroshnichenko, Justas Lekavičius, Gabriele De Luca, Umair Saeed, Karolis Kazlauskas, Nicolas Candau, Paulius Baronas, Anna Roig, Kasper Moth-Poulsen
{"title":"Photon upconversion crystals doped bacterial cellulose composite films as recyclable photonic bioplastics","authors":"Pankaj Bharmoria, Lukas Naimovičius, Deyaa Abol-Fotouh, Mila Miroshnichenko, Justas Lekavičius, Gabriele De Luca, Umair Saeed, Karolis Kazlauskas, Nicolas Candau, Paulius Baronas, Anna Roig, Kasper Moth-Poulsen","doi":"10.1038/s43246-024-00638-6","DOIUrl":"10.1038/s43246-024-00638-6","url":null,"abstract":"Biopolymers currently utilized as substitutes for synthetic polymers in photonics applications are predominantly confined to linear optical color responses. Herein we expand their applications in non-linear optics by integrating with triplet-triplet annihilation photon upconversion crystals. A photon upconverting biomaterial is prepared by cultivating Pd(II) meso-tetraphenyl tetrabenzoporphine: 9,10-diphenyl anthracene (sensitizer: annihilator) crystals on bacterial cellulose hydrogel that serves both as host and template for the crystallization of photon upconversion chromophores. Coating with gelatin improves the material’s optical transparency by adjusting the refractive indices. The prepared material shows an upconversion of 633 nm red light to 443 nm blue light, indicated by quadratic to linear dependence on excitation power density (non-linearly). Notably, components of this material are physically dis-assembled to retrieve 66 ± 1% of annihilator, at the end of life. Whereas, the residual clean biomass is subjected to biodegradation, showcasing the sustainability of the developed photonics material. Biopolymers used in photonics are mainly limited to linear optical color responses. Here, photon upconversion crystals incorporated into bacterial cellulose films demonstrate non-linear optical applications in biopolymers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00638-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3 对块状 Cu2OSeO3 表面的磁旋涡相、天电离子团和天电离子位移进行成像
IF 7.5
Communications Materials Pub Date : 2024-09-28 DOI: 10.1038/s43246-024-00647-5
Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio
{"title":"Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3","authors":"Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio","doi":"10.1038/s43246-024-00647-5","DOIUrl":"10.1038/s43246-024-00647-5","url":null,"abstract":"Surfaces – by breaking bulk symmetries, introducing roughness, or hosting defects – can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along $$leftlangle 100rightrangle$$ . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator. Surfaces can significantly influence magnetic order by breaking bulk symmetries, introducing roughness, or hosting defects. Here, a microscopy study of the surface of bulk Cu2OSeO3 reveals magnetic textures associated with distinct surface states, such as in-plane magnetic stripes that are absent in the bulk, and demonstrates the local displacement of individual skyrmions by an applied electric field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00647-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of interfacial roughness on slot-die coatings for scaling-up high-performance perovskite solar cells 界面粗糙度对用于放大高性能过氧化物太阳能电池的槽栅涂层的影响
IF 7.5
Communications Materials Pub Date : 2024-09-28 DOI: 10.1038/s43246-024-00645-7
Sushil Shivaji Sangale, Dilpreet Singh Mann, Hyun-Jung Lee, Sung-Nam Kwon, Seok-In Na
{"title":"Influence of interfacial roughness on slot-die coatings for scaling-up high-performance perovskite solar cells","authors":"Sushil Shivaji Sangale, Dilpreet Singh Mann, Hyun-Jung Lee, Sung-Nam Kwon, Seok-In Na","doi":"10.1038/s43246-024-00645-7","DOIUrl":"10.1038/s43246-024-00645-7","url":null,"abstract":"Slot-die coating (SDC) technology is a potential approach to mass produce large-area, high-performance perovskite solar cells (PSCs) at low cost. However, when the interface in contact with the perovskite ink has low wettability, the SDC cannot form a uniform pinhole-free perovskite film, which reduces the performance of the PSC. To address this issue, in this study, the wettability of the hole transport layer (HTL) interface was investigated in depth by analyzing the variation of wettability with process and its correlation with the roughness of the HTL interface. As a result, it was found that SDC could increase the roughness of the HTL interface to improve wettability and form a uniform high-quality perovskite layer without pinholes, and furthermore, SDC-based NiOx/Me-4PACz HTL suppressed energy losses at the HTL/perovskite interface. In addition, a unit cell achieved 19.17% of efficiency with long-term stability and lab cell-sized modules showed up to 17.42%. Slot-die coating is promising for the large-scale and low-cost manufacture of perovskite solar cells. Here, the effect of wettability of the hole transport layer is investigated, finding that increased surface roughness improves wettability and prevents pinhole formation, favoring solar cell efficiency.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00645-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues 用于软问题药物输送的抗坏血酸棕榈酸酯纳米纤维增强水凝胶
IF 7.5
Communications Materials Pub Date : 2024-09-20 DOI: 10.1038/s43246-024-00641-x
Yasmeen Shamiya, Aishik Chakraborty, Alap Ali Zahid, Nicholas Bainbridge, Jingyuan Guan, Biao Feng, Dominic Pjontek, Subrata Chakrabarti, Arghya Paul
{"title":"Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues","authors":"Yasmeen Shamiya, Aishik Chakraborty, Alap Ali Zahid, Nicholas Bainbridge, Jingyuan Guan, Biao Feng, Dominic Pjontek, Subrata Chakrabarti, Arghya Paul","doi":"10.1038/s43246-024-00641-x","DOIUrl":"10.1038/s43246-024-00641-x","url":null,"abstract":"Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics. Nanofiber-based hydrogels are useful delivery systems in biomedical applications due to their drug loading capability and controlled release. Here, a biocompatible visible light-triggered in situ-gelling drug delivery system is demonstrated consisting of ascorbyl palmitate nanofibers and gelatin methacryloyl polymer.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00641-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-inspired autonomy in soft robots 软体机器人的生物启发自主性
IF 7.5
Communications Materials Pub Date : 2024-09-20 DOI: 10.1038/s43246-024-00637-7
Lucas Carolus van Laake, Johannes Tesse Bastiaan Overvelde
{"title":"Bio-inspired autonomy in soft robots","authors":"Lucas Carolus van Laake, Johannes Tesse Bastiaan Overvelde","doi":"10.1038/s43246-024-00637-7","DOIUrl":"10.1038/s43246-024-00637-7","url":null,"abstract":"Soft robotic actuation concepts meet and sometimes exceed their natural counterparts. In contrast, artificially recreating natural levels of autonomy is still an unmet challenge. Here, we come to this conclusion after defining a measure of energy- and control-autonomy and classifying a representative selection of soft robots. We argue that, in order to advance the field, we should focus our attention on interactions between soft robots and their environment, because in nature autonomy is also achieved in interdependence. If we better understand how interactions with an environment are leveraged in nature, this will enable us to design bio-inspired soft robots with much greater autonomy in the future. Naturally occurring organisms continue to provide inspiration for advanced functionality in soft robots. This Perspective discusses how achieving autonomy in robots will require interactions with their environment to be taken into consideration in their design.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00637-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple intermediates in the detergent-induced fusion of lipid vesicles 去污剂诱导脂质囊泡融合的多个中间体
IF 7.5
Communications Materials Pub Date : 2024-09-19 DOI: 10.1038/s43246-024-00628-8
Lara G. Dresser, Casper Kunstmann-Olsen, Donato Conteduca, Christopher M. Hofmair, Nathan Smith, Laura Clark, Steven Johnson, J. Carlos Penedo, Mark C. Leake, Steven D. Quinn
{"title":"Multiple intermediates in the detergent-induced fusion of lipid vesicles","authors":"Lara G. Dresser, Casper Kunstmann-Olsen, Donato Conteduca, Christopher M. Hofmair, Nathan Smith, Laura Clark, Steven Johnson, J. Carlos Penedo, Mark C. Leake, Steven D. Quinn","doi":"10.1038/s43246-024-00628-8","DOIUrl":"10.1038/s43246-024-00628-8","url":null,"abstract":"Detergent-induced vesicle interactions, critical for applications including virus inactivation, varies according to the detergent type and membrane composition, but the underlying mechanistic details remain underexplored. Here, we use a lipid mixing assay based on Förster resonance energy transfer (FRET), and single-vesicle characterization approaches to identify that sub-micron-sized vesicles are induced to fuse by the non-ionic detergent Triton-X-100. We demonstrate that the process is a multi-step mechanism, characterized by discrete values of FRET efficiency between membrane-embedded fluorophores, and involves permeabilization, vesicle docking, hemi-fusion and full lipid mixing at sub-solubilizing detergent concentrations. We also dissect the kinetics of vesicle fusion to surface-tethered vesicles using a label-free quartz-crystal microbalance with dissipation monitoring approach, opening a platform for biotechnology applications. The presented strategies provide mechanistic insight into the dynamics of vesicle fusion and have implications for applications including drug delivery and sensor development where transport and manipulation of encapsulated cargo is essential. Detergent-induced membrane interactions are important for biotechnology applications but their mechanism is still not well understood. Here, sub-micron-sized vesicles are shown to fuse by a non-ionic detergent, involving permeabilization, vesicle docking, hemi-fusion, and full lipid mixing steps.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00628-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective reductive conversion of CO2 to CH2-bridged compounds by using a Fe-functionalized graphene oxide-based catalyst 使用铁功能化氧化石墨烯基催化剂将二氧化碳选择性还原转化为 CH2-桥接化合物
IF 7.5
Communications Materials Pub Date : 2024-09-19 DOI: 10.1038/s43246-024-00639-5
Swarbhanu Ghosh, Parisa A. Ariya
{"title":"Selective reductive conversion of CO2 to CH2-bridged compounds by using a Fe-functionalized graphene oxide-based catalyst","authors":"Swarbhanu Ghosh, Parisa A. Ariya","doi":"10.1038/s43246-024-00639-5","DOIUrl":"10.1038/s43246-024-00639-5","url":null,"abstract":"Anthropogenic climate change drastically affects our planet, with CO2 being the most critical gaseous driver. Despite the existing carbon dioxide capture and transformation, there is much need for innovative carbon dioxide hydrogenation catalysts with excellent selectivity. Here, we present a fast, effective, and sustainable route for coupling diverse alcohols, amines and amides with CO2 via heterogenization of a natural metal-based homogeneous catalyst through decorating on functionalized graphene oxide (GO). Combined synthetic, experimental, and theoretical studies unravel mechanistic routes to convergent 4‑electron reduction of CO2 under mild conditions. We successfully replace the toxic and expensive ruthenium species with inexpensive, ubiquitously available and recyclable iron. This iron-based functionalized graphene oxide (denoted as Fe@GO-EDA, where EDA represents ethylenediamine) functions as an efficient catalyst for the selective conversion of CO2 into a formaldehyde oxidation level, thus opening the door for interesting molecular structures using CO2 as a C1 source. Overall, this work describes an intriguing heterogeneous platform for the selective synthesis of valuable methylene-bridged compounds via 4‑electron reduction of CO2. Carbon dioxide in the atmosphere can be captured and transformed to useful chemicals with hydrogenation catalysts. Here, iron-functionalized graphene oxide-based catalyst functions as an effective catalyst for the selective conversion of carbon dioxide into a formaldehyde oxidation level.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-17"},"PeriodicalIF":7.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00639-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials and methods for cost-effective fabrication of perovskite photovoltaic devices 经济高效地制造过氧化物光伏器件的材料和方法
IF 7.5
Communications Materials Pub Date : 2024-09-18 DOI: 10.1038/s43246-024-00636-8
Chunyang Zhang, Nam-Gyu Park
{"title":"Materials and methods for cost-effective fabrication of perovskite photovoltaic devices","authors":"Chunyang Zhang, Nam-Gyu Park","doi":"10.1038/s43246-024-00636-8","DOIUrl":"10.1038/s43246-024-00636-8","url":null,"abstract":"Although perovskite solar cells (PSCs) are promising next generation photovoltaics, the production of PSCs might be hampered by complex and inefficient procedures. This Review outlines important advances in materials and methods for the cost-effective manufacturing of PSCs, including precursor synthesis, selection criteria for precursors based on chemistry, additive engineering, and deposition techniques. The goal of these technologies is not only to improve the performance and stability of PSCs, but also to significantly reduce their manufacturing costs. These advances are critical to the commercialization of PSCs, in terms of making them viable and cost-effective. The scalable and cost-effective synthesis of perovskite solar cells is dependent on materials chemistry and the synthesis technique. This Review discusses these considerations, including selecting a suitable perovskite pre-cursor, additive engineering, and the deposition process.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00636-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsically microporous polyimide-based metal-free catalysts for round-the-clock photodegradation of organic pollutants 用于全天候光降解有机污染物的本征微孔聚酰亚胺基无金属催化剂
IF 7.5
Communications Materials Pub Date : 2024-09-18 DOI: 10.1038/s43246-024-00629-7
Zainah A. AlDhawi, Ridha Hamdi, Mahmoud A. Abdulhamid
{"title":"Intrinsically microporous polyimide-based metal-free catalysts for round-the-clock photodegradation of organic pollutants","authors":"Zainah A. AlDhawi, Ridha Hamdi, Mahmoud A. Abdulhamid","doi":"10.1038/s43246-024-00629-7","DOIUrl":"10.1038/s43246-024-00629-7","url":null,"abstract":"Photocatalytic degradation of organic pollutants is an essential technology for various environmental applications. However, the effectiveness of most photocatalysts is restricted to light. Herein, we report metal-free catalysts derived from intrinsically microporous polyimide for persistence in photocatalytic degradation of dyes. We systematically investigate the effect of porosity and functionality on photocatalytic efficiency. Both the pristine 4,4′-(hexafluoroisopropylidene)diphthalic anhydride-3,3′-dimethylnaphthidine and its thermally annealed counterpart at 530 °C exhibit high charge storage capabilities, enabling continuous photodegradation in the absence of light. The pre-irradiated catalyst exhibits an approximately 99% degradation of the dye, with a ~40% improvement relative to the non-pre-irradiated sample. We studied the influence of the chemical structure and porosity on the photocatalytic degradation efficiency in darkness by varying the polyimide chemical structure using different diamines. This research underscores the potential of polymers with intrinsic microporosity for application in the continuous degradation of dyes, contributing to the pursuit of cleaner water. Photodegradation of pollutants is important to produce clean water but their activities are restricted during nighttime. Here, metal-free catalysts derived from intrinsically microporous polyimide show efficient photocatalytic degradation activities of dyes under light and darkness.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00629-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信