在零磁场下运行的带铁磁约瑟夫森 π 结的超导通量量子比特

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sunmi Kim, Leonid V. Abdurakhimov, Duong Pham, Wei Qiu, Hirotaka Terai, Sahel Ashhab, Shiro Saito, Taro Yamashita, Kouichi Semba
{"title":"在零磁场下运行的带铁磁约瑟夫森 π 结的超导通量量子比特","authors":"Sunmi Kim, Leonid V. Abdurakhimov, Duong Pham, Wei Qiu, Hirotaka Terai, Sahel Ashhab, Shiro Saito, Taro Yamashita, Kouichi Semba","doi":"10.1038/s43246-024-00659-1","DOIUrl":null,"url":null,"abstract":"Conventional superconducting flux qubits require the application of a precisely tuned magnetic field to set the operation point at half a flux quantum through the qubit loop, which complicates the on-chip integration of this type of device. It has been proposed that by inducing a π-phase shift in the superconducting order parameter using a precisely controlled nanoscale-thickness superconductor/ferromagnet/superconductor Josephson junction, commonly referred to as π-junction, it is possible to realize a flux qubit operating at zero magnetic flux. Here, we report the realization of a zero-flux-biased flux qubit based on three NbN/AlN/NbN Josephson junctions and a NbN/PdNi/NbN ferromagnetic π-junction. The qubit lifetime is in the microsecond range, which we argue is limited by quasiparticle excitations in the metallic ferromagnet layer. Our results pave the way for developing quantum coherent devices, including qubits and sensors, that utilize the interplay between ferromagnetism and superconductivity. Conventional superconducting flux qubits require a finely tuned magnetic field to operate, hindering their on-chip integration. Here, ferromagnetic Josephson junctions with a π-phase shift in the superconducting order parameter allow the realization of a flux qubit operating at zero magnetic field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00659-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Superconducting flux qubit with ferromagnetic Josephson π-junction operating at zero magnetic field\",\"authors\":\"Sunmi Kim, Leonid V. Abdurakhimov, Duong Pham, Wei Qiu, Hirotaka Terai, Sahel Ashhab, Shiro Saito, Taro Yamashita, Kouichi Semba\",\"doi\":\"10.1038/s43246-024-00659-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional superconducting flux qubits require the application of a precisely tuned magnetic field to set the operation point at half a flux quantum through the qubit loop, which complicates the on-chip integration of this type of device. It has been proposed that by inducing a π-phase shift in the superconducting order parameter using a precisely controlled nanoscale-thickness superconductor/ferromagnet/superconductor Josephson junction, commonly referred to as π-junction, it is possible to realize a flux qubit operating at zero magnetic flux. Here, we report the realization of a zero-flux-biased flux qubit based on three NbN/AlN/NbN Josephson junctions and a NbN/PdNi/NbN ferromagnetic π-junction. The qubit lifetime is in the microsecond range, which we argue is limited by quasiparticle excitations in the metallic ferromagnet layer. Our results pave the way for developing quantum coherent devices, including qubits and sensors, that utilize the interplay between ferromagnetism and superconductivity. Conventional superconducting flux qubits require a finely tuned magnetic field to operate, hindering their on-chip integration. Here, ferromagnetic Josephson junctions with a π-phase shift in the superconducting order parameter allow the realization of a flux qubit operating at zero magnetic field.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00659-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00659-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00659-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的超导通量量子比特需要应用精确调谐的磁场,将操作点设置在通过量子比特环的半个通量量子处,这使得这类器件的片上集成变得复杂。有人提出,通过使用精确控制的纳米厚度超导体/铁磁体/超导体约瑟夫森结(通常称为π结)在超导阶参数中诱导π相移,就有可能实现在零磁通量下工作的磁通量比特。在此,我们报告了基于三个 NbN/AlN/NbN 约瑟夫森结和一个 NbN/PdNi/NbN 铁磁 π 结实现的零磁通偏置磁通量量子比特。我们认为,这是受金属铁磁层中准粒子激发的限制。我们的研究成果为利用铁磁性和超导性之间的相互作用开发量子相干器件(包括量子比特和传感器)铺平了道路。传统的超导通量量子比特需要微调磁场才能运行,这阻碍了它们在芯片上的集成。在这里,铁磁约瑟夫森结在超导阶参数上具有π相移,从而实现了在零磁场下运行的磁通量量子比特。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superconducting flux qubit with ferromagnetic Josephson π-junction operating at zero magnetic field

Superconducting flux qubit with ferromagnetic Josephson π-junction operating at zero magnetic field
Conventional superconducting flux qubits require the application of a precisely tuned magnetic field to set the operation point at half a flux quantum through the qubit loop, which complicates the on-chip integration of this type of device. It has been proposed that by inducing a π-phase shift in the superconducting order parameter using a precisely controlled nanoscale-thickness superconductor/ferromagnet/superconductor Josephson junction, commonly referred to as π-junction, it is possible to realize a flux qubit operating at zero magnetic flux. Here, we report the realization of a zero-flux-biased flux qubit based on three NbN/AlN/NbN Josephson junctions and a NbN/PdNi/NbN ferromagnetic π-junction. The qubit lifetime is in the microsecond range, which we argue is limited by quasiparticle excitations in the metallic ferromagnet layer. Our results pave the way for developing quantum coherent devices, including qubits and sensors, that utilize the interplay between ferromagnetism and superconductivity. Conventional superconducting flux qubits require a finely tuned magnetic field to operate, hindering their on-chip integration. Here, ferromagnetic Josephson junctions with a π-phase shift in the superconducting order parameter allow the realization of a flux qubit operating at zero magnetic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信