设计用于稳定乳液的刺激响应型最小七元表面活性剂

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Li, Yilun Weng, Yue Hui, Jiaqi Wang, Letao Xu, Yang Yang, Guangze Yang, Chun-Xia Zhao
{"title":"设计用于稳定乳液的刺激响应型最小七元表面活性剂","authors":"Yang Li, Yilun Weng, Yue Hui, Jiaqi Wang, Letao Xu, Yang Yang, Guangze Yang, Chun-Xia Zhao","doi":"10.1038/s43246-024-00670-6","DOIUrl":null,"url":null,"abstract":"Peptide surfactants have been extensively investigated with various applications in detergents, foods, and pharmaceutics due to their biodegradability, biocompatibility, and customizable structures. Traditional peptide surfactants are often designed in a head-to-tail fashion mimicking chemical surfactants. Alternatively, a side-by-side design pattern based on heptad repeats offers an approach to designing peptide surfactants. However, minimalist peptide design using a single heptad for stabilizing interfaces remains largely unexplored. Here, we design four heptad surfactants (AM1.2, 6H, 6H7K, and HK) responsive to metal ions and compare their emulsification performance with a three-heptad peptide, AM1. Among them, the HK peptide generates emulsions exhibiting good stability over months. We further optimize factors such as buffering salts, ionic strength, and emulsion dilutions to uncover their impacts on emulsion properties. Our findings deepen the understanding of emulsion properties and provide practical insights for characterizing peptide-based emulsions, paving the way for their broader utilization in diverse applications. Peptide surfactants are useful in detergents, foods, and pharmaceutics but their design using a single heptad remains largely unexplored. Here, four heptad surfactants were designed that are responsive to metal ions and show good emulsification properties.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00670-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of stimuli-responsive minimalist heptad surfactants for stable emulsions\",\"authors\":\"Yang Li, Yilun Weng, Yue Hui, Jiaqi Wang, Letao Xu, Yang Yang, Guangze Yang, Chun-Xia Zhao\",\"doi\":\"10.1038/s43246-024-00670-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peptide surfactants have been extensively investigated with various applications in detergents, foods, and pharmaceutics due to their biodegradability, biocompatibility, and customizable structures. Traditional peptide surfactants are often designed in a head-to-tail fashion mimicking chemical surfactants. Alternatively, a side-by-side design pattern based on heptad repeats offers an approach to designing peptide surfactants. However, minimalist peptide design using a single heptad for stabilizing interfaces remains largely unexplored. Here, we design four heptad surfactants (AM1.2, 6H, 6H7K, and HK) responsive to metal ions and compare their emulsification performance with a three-heptad peptide, AM1. Among them, the HK peptide generates emulsions exhibiting good stability over months. We further optimize factors such as buffering salts, ionic strength, and emulsion dilutions to uncover their impacts on emulsion properties. Our findings deepen the understanding of emulsion properties and provide practical insights for characterizing peptide-based emulsions, paving the way for their broader utilization in diverse applications. Peptide surfactants are useful in detergents, foods, and pharmaceutics but their design using a single heptad remains largely unexplored. Here, four heptad surfactants were designed that are responsive to metal ions and show good emulsification properties.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00670-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00670-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00670-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肽表面活性剂具有生物降解性、生物相容性和可定制的结构,因此在洗涤剂、食品和制药领域的各种应用中得到了广泛的研究。传统的多肽表面活性剂通常是模仿化学表面活性剂的头尾式设计。另外,基于七联重复的并排设计模式也是设计多肽表面活性剂的一种方法。然而,使用单个七和弦稳定界面的极简多肽设计在很大程度上仍未得到探索。在这里,我们设计了四种对金属离子有反应的七元肽表面活性剂(AM1.2、6H、6H7K 和 HK),并将它们的乳化性能与三七元肽 AM1 进行了比较。 其中,HK 肽产生的乳液在数月内表现出良好的稳定性。我们进一步优化了缓冲盐、离子强度和乳液稀释度等因素,以揭示它们对乳液特性的影响。我们的研究结果加深了人们对乳液特性的理解,并为表征基于多肽的乳液提供了实用的见解,为在各种应用中更广泛地使用多肽乳液铺平了道路。多肽表面活性剂在洗涤剂、食品和制药方面非常有用,但使用单一七元肽设计多肽表面活性剂在很大程度上仍未得到探索。在此,我们设计了四种对金属离子反应灵敏且具有良好乳化性能的七元肽表面活性剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of stimuli-responsive minimalist heptad surfactants for stable emulsions

Design of stimuli-responsive minimalist heptad surfactants for stable emulsions
Peptide surfactants have been extensively investigated with various applications in detergents, foods, and pharmaceutics due to their biodegradability, biocompatibility, and customizable structures. Traditional peptide surfactants are often designed in a head-to-tail fashion mimicking chemical surfactants. Alternatively, a side-by-side design pattern based on heptad repeats offers an approach to designing peptide surfactants. However, minimalist peptide design using a single heptad for stabilizing interfaces remains largely unexplored. Here, we design four heptad surfactants (AM1.2, 6H, 6H7K, and HK) responsive to metal ions and compare their emulsification performance with a three-heptad peptide, AM1. Among them, the HK peptide generates emulsions exhibiting good stability over months. We further optimize factors such as buffering salts, ionic strength, and emulsion dilutions to uncover their impacts on emulsion properties. Our findings deepen the understanding of emulsion properties and provide practical insights for characterizing peptide-based emulsions, paving the way for their broader utilization in diverse applications. Peptide surfactants are useful in detergents, foods, and pharmaceutics but their design using a single heptad remains largely unexplored. Here, four heptad surfactants were designed that are responsive to metal ions and show good emulsification properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信