Anureet Kaur, Meet M. Fefar, Thomas Griggs, Keizo Akutagawa, Biqiong Chen, James J. C. Busfield
{"title":"Recyclable sulfur cured natural rubber with controlled disulfide metathesis","authors":"Anureet Kaur, Meet M. Fefar, Thomas Griggs, Keizo Akutagawa, Biqiong Chen, James J. C. Busfield","doi":"10.1038/s43246-024-00651-9","DOIUrl":"10.1038/s43246-024-00651-9","url":null,"abstract":"Traditionally, sulfur-cured natural rubber compounds exhibit limited recyclability due to a significant drop in mechanical performance after reprocessing. Maintaining physical and chemical properties after recycling of a cross-linked polymer is an essential requirement for the global rubber industry to become more sustainable. Here, we demonstrate that tuning the curing process to favour a reversible cross-linked network based on disulfide and polysulfide bonds enables recyclability. We use a sulfur-based vulcanization system optimized with copper (II) methacrylate at concentrations of 2.47, 4.94, and 9.89 phr to control disulfide metathesis at low temperatures and enhance recyclability. Mechanical characterization identifies 2.47 phr as optimal for maintaining mechanical properties after initial moulding and full recovery after recycling. Additionally, we demonstrate that copper (II) methacrylate can be incorporated into existing rubber waste streams to promote recyclability. Cross-linked polymers must maintain physical and chemical properties after recycling to improve sustainability. Here, tuning the curing process to favour a reversible cross-linked network using disulfides and polysulfides bonds retains mechanical performance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00651-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziao Xue, YanSong Gai, Yuxiang Wu, Zhuo liu, Zhou Li
{"title":"Wearable mechanical and electrochemical sensors for real-time health monitoring","authors":"Ziao Xue, YanSong Gai, Yuxiang Wu, Zhuo liu, Zhou Li","doi":"10.1038/s43246-024-00658-2","DOIUrl":"10.1038/s43246-024-00658-2","url":null,"abstract":"Wearable sensors provide a good solution for real-time monitoring of human health, and great progress has been made in miniaturization, flexibility, low power consumption and intelligence in recent years. Here, we introduce the principles of wearable sensors and their applications in disease surveillance. Physiological signals mainly include physical signals and biochemical signals. Among various sensors used to monitor physiological signals, we have introduced the basic working principles of mechanical sensors and electrochemical sensors. We summarize the examples of the clever integration of sensors with daily wearable products, and introduce cases of disease monitoring applied to the respiratory system, cardiovascular system, nervous system, musculoskeletal system and metabolic system. In view of the current situation of wearable sensors in terms of materials, structure, technology and energy, we discuss challenges and solutions of wearable mechanical and electrochemical sensors, and look forward to the application prospects of wearable sensors. Wearable sensors can expedite personalized medicine by integrating sensors into our daily lives. This Perspective discusses mechanical and electrochemical sensors, including their operating principles, device synthesis, and examples of their use in monitoring disease, and cardiovascular, nervous and musculoskeletal systems","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00658-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangjiang Yu, Subhajit Dutta, Jacopo Andreo, Stefan Wuttke
{"title":"Identifying synthetic variables influencing the reproducible microfluidic synthesis of ZIF nano- and micro-particles","authors":"Xiangjiang Yu, Subhajit Dutta, Jacopo Andreo, Stefan Wuttke","doi":"10.1038/s43246-024-00644-8","DOIUrl":"10.1038/s43246-024-00644-8","url":null,"abstract":"The reproducible synthesis of nano- and -micro particles is a critical step in multiple synthetic and industrial processes. Microfluidic synthesis offers numerous advantages for development of precise, reliable, and industrially useful synthesis protocols. However, the influence of different synthetic variables on reproducibility in microfluidic synthesis is underexplored. In this work, we systematically study the influence of key synthetic parameters on the microfluidic synthesis of four Zeolitic Imidazolate Frameworks (ZIFs): ZIF-7, ZIF-8, ZIF-9, and ZIF-67. Utilizing a coiled tube microfluidic setup, we explore the influence of key synthetic parameters such as reagent concentration, stoichiometry, aging time, and nine modulators (pH-altering agents, surfactants, and polar polymers). Most importantly, we evaluate the impact of these variables in combination with the role of mixing, using the Dean flow model. Lastly, we focus on the reproducibility problems that a coiled reactor presents at specific flowrates and how these problems can be recognized and avoided. Overall, the insights collected from this work inform the design of synthetic protocols and enhance material reproducibility and control in microfluidic nano- and micro-particle synthesis. Microfluidic synthesis is an important protocol in multiple synthetic and industrial processes. Here, the influence of key synthetic parameters on the microfluidic synthesis of Zeolitic Imidazolate Frameworks is evaluated, with recommendations given for reproducible synthesis.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00644-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asish K. Kundu, Anil Rajapitamahuni, Elio Vescovo, Ilya I. Klimovskikh, Helmuth Berger, Tonica Valla
{"title":"Charge density waves and the effects of uniaxial strain on the electronic structure of 2H-NbSe2","authors":"Asish K. Kundu, Anil Rajapitamahuni, Elio Vescovo, Ilya I. Klimovskikh, Helmuth Berger, Tonica Valla","doi":"10.1038/s43246-024-00661-7","DOIUrl":"10.1038/s43246-024-00661-7","url":null,"abstract":"Interplay of superconductivity and density wave orders has been at the forefront of research of correlated electronic phases for a long time. 2H-NbSe2 is considered to be a prototype system for studying this interplay, where the balance between the two orders was proven to be sensitive to band filling and pressure. However, the origin of charge density wave in this material is still unresolved. Here, by using angle-resolved photoemission spectroscopy, we revisit the charge density wave order and study the effects of uniaxial strain on the electronic structure of 2H-NbSe2. Our results indicate previously undetected signatures of charge density waves on the Fermi surface. The application of small amount of uniaxial strain induces substantial changes in the electronic structure and lowers its symmetry. This, and the altered lattice should affect both the charge density wave phase and superconductivity and should be observable in the macroscopic properties. 2H-NbSe2 is a prototype system for studying the interplay between superconductivity and density wave orders. Here, an angle-resolved photoemission spectroscopy study provides insights into the origin of charge density wave in this material and reveals the substantial effects of uniaxial strain in modifying the electronic structure.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00661-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sami Vesamäki, Henning Meteling, Roshan Nasare, Antti Siiskonen, Jani Patrakka, Nelmary Roas-Escalona, Markus Linder, Matti Virkki, Arri Priimagi
{"title":"Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films","authors":"Sami Vesamäki, Henning Meteling, Roshan Nasare, Antti Siiskonen, Jani Patrakka, Nelmary Roas-Escalona, Markus Linder, Matti Virkki, Arri Priimagi","doi":"10.1038/s43246-024-00642-w","DOIUrl":"10.1038/s43246-024-00642-w","url":null,"abstract":"Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene’s humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity. Our concept is based on thermal isomerisation kinetics of tautomerizable azobenzenes in polymer matrices which, using pre-defined calibration curves, can be converted to relative humidity at known temperature. We present a small library of tautomerizable azobenzenes exhibiting humidity sensitive isomerisation kinetics in hygroscopic polymer films. We also investigate how water absorption properties of the polymer used, and the isomerisation kinetics are linked and how the azobenzene content in the thin film affects both properties. Based on our findings we propose simple strategies for further development of azobenzene-based optical humidity sensors. Many variables related to azobenzene-based humidity sensors remain. Here, a small library of tautomerisable azobenzenes is studied for their humidity dependent thermal isomerisation rate in polymer thin films.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert Puttock, Anaïs Fondet, Ingrid M. Andersen, Mark C. Rosamond, Alexander Fernández Scarioni, Hans W. Schumacher, Etienne Snoeck, Christophe Gatel, Olga Kazakova
{"title":"Stochastic hexagonal injectors in artificial spin ice","authors":"Robert Puttock, Anaïs Fondet, Ingrid M. Andersen, Mark C. Rosamond, Alexander Fernández Scarioni, Hans W. Schumacher, Etienne Snoeck, Christophe Gatel, Olga Kazakova","doi":"10.1038/s43246-024-00614-0","DOIUrl":"10.1038/s43246-024-00614-0","url":null,"abstract":"Artificial spin ice (ASI) systems have emerged as powerful platforms for exploring the fundamental aspects of magnetic frustration and topological phenomena in condensed matter physics. In this study, we investigate the bountiful effects that result from introducing hexagonal magnetic defects into an ASI lattice. The stochastic stabilisation of a plethora of metastable states in the hexagonal defects are explored, as well as harnessing the defect magnetisation state for the selective injection of emergent monopoles of different polarities and proximities within the lattice. We demonstrate a mechanism for tailoring the ASI behaviour using the magnetic state of the defect, which is of interest to applications including magnetic memory devices and spin-based logic. Artificial spin ice systems are interesting material simulators for exploring magnetic frustration and topological phenomena in condensed matter physics. Here, the authors investigate the effects of hexagonal magnetic defects introduced into an artificial spin ice lattice, demonstrating the stochastic stabilisation of metastable magnetic configurations and local tuning of the system’s switching response.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00614-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Aniceto-Ocaña, José Marqueses-Rodriguez, José A. Perez-Omil, José J. Calvino, Carmen E. Castillo, Miguel Lopez-Haro
{"title":"Direct quantitative assessment of single-atom metal sites supported on powder catalysts","authors":"Paula Aniceto-Ocaña, José Marqueses-Rodriguez, José A. Perez-Omil, José J. Calvino, Carmen E. Castillo, Miguel Lopez-Haro","doi":"10.1038/s43246-024-00652-8","DOIUrl":"10.1038/s43246-024-00652-8","url":null,"abstract":"Rational design of effective catalyst demands a profound understanding of active-site structures. Single-atom supported powder catalysts, depicting unique features like enhanced metal dispersion, hold promise in different applications. Here, we present an approach to directly quantify the detailed structural nature of metal sites in single-atom, high surface area, powder catalysts. By combining advanced high-resolution scanning-transmission electron microscopy, deep learning and density functional theory calculations, we determine, with statistical significance, the exact location and coordination environment of Pd single-atoms supported on MgO nanoplates. Our findings reveal a preferential interaction of Pd single-atoms with cationic vacancies (V-centers), followed by occupation of anionic defects on the {001} MgO surface. The former interaction results in stabilization of PdO species within V-centers, while partially embedded Pd states are found in F-defects. This methodology opens a route to the ultimate structural analysis of metal-support interaction effects, key in the design of advanced nanocatalysts for sustainable and energy-efficient processes. Metal active sites are important in catalysts to function in various applications. Here, the detailed structural nature of single-atom metal sites is directly quantified using a combination of high-resolution microscopy, deep learning, and theoretical calculation methods.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00652-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accelerating solar-powered desalination deployment through transferable learning","authors":"Ruoqing Wang, Wei He","doi":"10.1038/s43246-024-00646-6","DOIUrl":"10.1038/s43246-024-00646-6","url":null,"abstract":"Solar desalination offers a promising solution to the global water shortage, yet it is underutilized compared to traditional fossil fuel-driven methods. Past solar desalination research prioritized efficiency enhancement and cost reduction, overlooking critical knowledge gaps and specific needs for facilitating the technology’s adoption. Here we apply lessons from the successful development of photovoltaics and lithium-ion batteries to enhance the solar desalination impact’s on water scarcity. We analyze four decades of research, noting consistent cost decreases in key solar desalination technologies, alongside variable efficiency trends. Investigating cost reduction strategies in photovoltaics and batteries reveals opportunities to accelerate solar desalination uptake. Our findings reveal cost-saving potential through economies-of-scale and learning-by-doing particularly in system-level innovations, which could yield benefits already seen in the photovoltaics, batteries and some membrane materials but not yet in solar desalination systems. We also propose adopting standardized metrics to monitor consistent progress across different technologies but distinct learning curves tailored to application scenarios, promoting targeted advancements for widespread adoption. One of the key barriers to the implementation of solar-powered desalination facilities is their cost. Here, by studying the roll-out of photovoltaic and lithium-ion batteries, lessons are learned that could speed-up solar desalination deployment, such as economies-of-scale and learning-by-doing.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-14"},"PeriodicalIF":7.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00646-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical force-switchable aqueous organocatalysis","authors":"Nikita Das, Chandan Maity","doi":"10.1038/s43246-024-00640-y","DOIUrl":"10.1038/s43246-024-00640-y","url":null,"abstract":"Control over the catalytic activity of artificial catalytic systems in aqueous media is of high interest for biomimetic artificial catalysts. The activity of catalytic systems can be controlled via introducing stimuli-responsive feature in the structure of the catalytic systems. However, temperature, pH or light have been predominantly used as stimulus. Aqueous catalytic system whose activity can be turned ‘ON/OFF’ employing mechanical force has not been demonstrated. Here we show how catalytic activity of an aqueous catalytic system can be switched ‘ON/OFF’ via the application/ceasing ultrasound stimulus. We demonstrate that the accessibility of imidazole, a catalyst moiety, can be modulated via the presence/absence of the ultrasound stimulus, resulting temporal control over the rate of ester hydrolysis reactions in aqueous buffer solution. This generic approach enables using a large range of organocatalysts for the preparation of molecules and/or materials in aqueous media for their application to material science, and in biomedical field. It is challenging to control the activity of artificial organocatalyst systems in aqueous media. Here, the organocatalytic activity of an aqueous catalytic system can be turned on or off for ester hydrolysis reactions using ultrasound stimulus.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00640-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning the thermodynamic ordering of strongly correlated protons in ice by angstrom-scale interface modification","authors":"Norihiro Aiga, Toshiki Sugimoto","doi":"10.1038/s43246-024-00648-4","DOIUrl":"10.1038/s43246-024-00648-4","url":null,"abstract":"The static and dynamic behaviour of strongly correlated many-body protons in nanoscale hydrogen-bond networks plays crucial roles in a wide range of physicochemical, biological and geological phenomena in nature. However, because of the difficulty of probing and manipulating the proton configuration in nanomaterials, controlling the cooperative behaviour of many-body protons remains challenging. By combining proton-order sensitive nonlinear optical spectroscopy and well-defined interface modification at molecular/atomic scale, we demonstrate the possibility of extensively tuning the emergent physical properties of strongly correlated protons beyond the thermodynamic constraints of bulk hydrogen bonds. Focusing on heteroepitaxially grown crystalline ice films as a model of a strongly correlated and frustrated proton system, we show that the emergence and disappearance of a high-Tc proton order on the nano- to mesoscale is readily switched by angstrom-scale interface engineering. These results pave a way to designing and controlling emergent properties of correlated proton systems. The ordering and dynamics of protons in nanoscale hydrogen-bond networks are crucial for a wide range of physicochemical, biological and geological phenomena in nature. Here, combining vibrational spectroscopy and Angstrom-scale interface engineering of crystalline ice films, an extensive tuning of strongly correlated proton ordering is demonstrated beyond the thermodynamic constraints of bulk hydrogen bonds.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00648-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}