{"title":"Influence of dislocation cells on hydrogen embrittlement in wrought and additively manufactured Inconel 718","authors":"Claudia-Tatiana Santos Maldonado, Alfredo Zafra, Emilio Martínez Pañeda, Paul Sandmann, Roberto Morana, Minh-Son Pham","doi":"10.1038/s43246-024-00654-6","DOIUrl":"10.1038/s43246-024-00654-6","url":null,"abstract":"Hydrogen embrittlement (HE) is a major issue for the mechanical integrity of high-strength alloys exposed to hydrogen-rich environments, with diffusion and trapping of hydrogen being critical phenomena. Here, the role of microstructure on hydrogen diffusion, trapping and embrittlement in additively manufactured (AM) and wrought Inconel 718 is compared, revealing the key role played by dislocation cells. Trapping behaviour in hydrogen-saturated alloys is analysed by thermal desorption spectroscopy and numerical simulations. A high density of hydrogen traps in cell walls, attributed to dense dislocations and Laves phases, are responsible for the local accumulation of hydrogen, causing significant loss in strength, and triggering cracking along dislocation cell walls. The influential role of dislocation cells alters fracture behaviour from intergranular in the wrought alloy to intragranular for the AM alloy, due to the large proportion of dislocation cells in AM alloys. In addition, the cellular network of dislocations accelerates hydrogen diffusion, enabling faster and deeper penetration of hydrogen in the AM alloy. These results indicate that the higher HE susceptibility of nickel superalloys is intrinsically associated with the interaction of hydrogen with dislocation walls. Hydrogen embrittlement is a major issue in alloys used in hydrogen-rich environments, such as in jet engines. In this study, the presence of a large number of dislocation cells in an additively manufactured nickel superalloy promotes hydrogen diffusion and fracture, as compared to a wrought alloy with fewer dislocation cells.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00654-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guixin Hou, Shengyu Zhu, Hui Tan, Wenyuan Chen, Jiao Chen, Qichun Sun, Juanjuan Chen, Jun Cheng, Peixuan Li, William Yi Wang, Jun Yang, Weimin Liu
{"title":"Near-zero-wear with super-hard WB4 and a self-repairing tribo-chemical layer","authors":"Guixin Hou, Shengyu Zhu, Hui Tan, Wenyuan Chen, Jiao Chen, Qichun Sun, Juanjuan Chen, Jun Cheng, Peixuan Li, William Yi Wang, Jun Yang, Weimin Liu","doi":"10.1038/s43246-024-00667-1","DOIUrl":"10.1038/s43246-024-00667-1","url":null,"abstract":"Achieving near-zero-wear remains a major challenge in mechanical engineering and material science. Current ultra-low wear materials are typically developed based on the self-consumption strategy. Here, we demonstrate a new self-repairing approach to achieve near-zero-wear. We find that the WB4-βB/WC tribo-pair has a low wear rate of 10−8 mm3 N−1 m−1 in low vacuum conditions, under a maximum Hertzian contact stress of 2.23 GPa over 1 × 105 friction cycles. Additionally, we observe an abnormal wear phenomenon after 5 × 104 friction cycles, characterized by an increase in the dimensions of the tribo-pair. This near-zero-wear mechanism is attributed to the synergistic action of the super-hard WB4-βB substrate and the self-repairing tribo-oxide layer. This research provides a new approach for advancing wear-resistant materials and enhancing material longevity. Expanding the range of ultra-low-wear material systems would benefit a number of applications. Here, near-zero-wear is reported in a WB4-βB/WC tribo-pair system, attributed to surface self-repair in a certain wear regime.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00667-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arthur Mantel, Berthold Stöger, Alexander Prado-Roller, Hidetsugu Shiozawa
{"title":"Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework","authors":"Arthur Mantel, Berthold Stöger, Alexander Prado-Roller, Hidetsugu Shiozawa","doi":"10.1038/s43246-024-00657-3","DOIUrl":"10.1038/s43246-024-00657-3","url":null,"abstract":"Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of $${{rm{Zn}}}{({{rm{DMSO}}})}_{6}^{2+}$$ cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs. Bulk crystal growth of metal-organic frameworks remains a challenge. Here, a single crystal of a metal-organic framework is grown homoepitaxially in the centimeter range, assisted by the ionic nature of the anionic framework with cationic 1D molecular fillers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00657-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyemin Jung, Seunghyun Lee, Xiao Jin, Yifan Liu, Theodore. J. Ronningen, Christopher. H. Grein, John. P. R. David, Sanjay Krishna
{"title":"Low excess noise and high quantum efficiency avalanche photodiodes for beyond 2 µm wavelength detection","authors":"Hyemin Jung, Seunghyun Lee, Xiao Jin, Yifan Liu, Theodore. J. Ronningen, Christopher. H. Grein, John. P. R. David, Sanjay Krishna","doi":"10.1038/s43246-024-00627-9","DOIUrl":"10.1038/s43246-024-00627-9","url":null,"abstract":"The rising concentration of greenhouse gases, especially methane and carbon dioxide, is driving global temperature increases and exacerbating the climate crisis. Monitoring these gases requires detectors that operate in the extended short-wavelength infrared range (~2.4 µm), covering methane (1.65 µm) and carbon dioxide (2.05 µm) wavelengths. Here, we present a high-performance linear mode avalanche photodetector (APD) with an InGaAs/GaAsSb type-II superlattice absorber and an AlGaAsSb multiplier, matched to InP substrates. This APD achieves a room temperature gain of 178, an external quantum efficiency of 3560% at 2 µm, low excess noise (less than 2 at gains below 20), and a small temperature coefficient of breakdown (7.58 mV/K·µm). These results indicate that a manufacturable semiconductor material-based APD could significantly advance high-sensitivity receivers for greenhouse gas monitoring, potentially enabling their commercial production and widespread use. Photodetectors for monitoring greenhouse gas emissions must cover the extended short-wavelength infrared range. Here, antimonide-based materials on a InP substrate enable a high-performance avalanche photodiode with detectivity beyond 2 µm wavelength.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00627-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev
{"title":"Fast low-temperature irradiation creep driven by athermal defect dynamics","authors":"Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev","doi":"10.1038/s43246-024-00655-5","DOIUrl":"10.1038/s43246-024-00655-5","url":null,"abstract":"The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. Here, we observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress. The creep behavior of actively cooled alloys exposed to neutron irradiation in fusion reactors is expected to critically affect the operation of reactor components. Here, experiments and simulations of a 16 μm thick tungsten wire exposed to low-temperature irradiation reveal stress relaxation rates far exceeding those associated with thermal creep.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00655-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zexiong Qiu, Jiale Liu, Chuanzhou Han, Chaoyang Wang, Junwei Xiang, Ziwei Zheng, Minhao Xia, Yang Zhou, Anyi Mei, Hongwei Han
{"title":"Decylammonium sulfate post-treatment for efficient hole-conductor-free printable perovskite solar cells with reduced voltage loss","authors":"Zexiong Qiu, Jiale Liu, Chuanzhou Han, Chaoyang Wang, Junwei Xiang, Ziwei Zheng, Minhao Xia, Yang Zhou, Anyi Mei, Hongwei Han","doi":"10.1038/s43246-024-00643-9","DOIUrl":"10.1038/s43246-024-00643-9","url":null,"abstract":"Hole-conductor-free printable mesoscopic perovskite solar cells (p-MPSCs) have attracted widespread attention for their low cost, up-scalability, and exceptional stability. However, the high defect density of perovskite and the absence of interfacial barrier layer between perovskite and carbon electrode cause profound open-circuit voltage (VOC) loss, which results in uncompetitive power conversion efficiency (PCE). Herein, an anion-cation synergy of decylammonium sulfate (DA2SO4) is utilized for suppressing VOC loss of p-MPSCs via a facile post-treatment method. DA+ cations transform the perovskite adjacent to carbon electrode into wide-bandgap 2D perovskite for blocking electrons, while the SO42− anions interact with undercoordinated lead centers for reducing defect density. As a result, the modified device delivers an enhanced PCE from 17.78% to 19.59%, with an improved VOC from 0.98 V to 1.06 V. Meanwhile, the modified device without any encapsulation exhibits excellent moisture stability with the PCE remained almost 99% of the initial value after 528 h aging in 75% RH air at room temperature. Open-circuit voltage loss is an issue faced by hole-conductor-free printable mesoscopic perovskite solar cells. Here, a facile decylammonium sulfate post-treatment reduces the voltage loss via an anion-cation synergy, and increases the power conversion efficiency from 17.8% to 19.6%.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00643-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discussing MXenes with Yury Gogotsi","authors":"","doi":"10.1038/s43246-024-00650-w","DOIUrl":"10.1038/s43246-024-00650-w","url":null,"abstract":"Yury Gogotsi is a pioneer of the burgeoning field of 2D MXenes. Here he offers his insight on the history of MXene development, promising applications and what he is excited about.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-3"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00650-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thies Jansen, Ekaterina Kochetkova, Anna Isaeva, Alexander Brinkman, Chuan Li
{"title":"Josephson coupling across magnetic topological insulator MnBi2Te4","authors":"Thies Jansen, Ekaterina Kochetkova, Anna Isaeva, Alexander Brinkman, Chuan Li","doi":"10.1038/s43246-024-00649-3","DOIUrl":"10.1038/s43246-024-00649-3","url":null,"abstract":"Topological superconductors hosting Majorana zero modes are of great interest for both fundamental physics and potential quantum computing applications. In this work, we investigate the transport properties of the intrinsic magnetic topological insulator MnBi2Te4 (MBT). In normal transport measurements, we observe the presence of chiral edge channels, though with deviations from perfect quantization due to factors such as non-uniform thickness, domain structures, and the presence of quasi-helical edge states. Subsequently, we fabricate superconducting junctions using niobium leads on MBT exfoliated flakes, which show an onset of supercurrent with clear Josephson coupling. The interference patterns in the superconducting junctions reveal interesting asymmetries, suggesting changes in the magnetic ordering of the MBT flakes under small applied magnetic fields. Moreover, the modulation of the critical current by magnetic field reveals a SQUID-like pattern, suggesting the presence of supercurrent through the quasi-helical edge states. Topological superconductors hosting Majorana zero modes are of great interest for both fundamental physics and potential quantum computing applications. Here, the intrinsic and Josephson junction transport properties of magnetic topological insulator MnBi2Te4 are investigated, revealing superconducting interference patterns that suggest the presence of supercurrent through quasi-helical edge states.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00649-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructing matched sub-nanometric cobalt clusters with multiple oxidation and metallic states for efficient propane dehydrogenation","authors":"Weihua Deng, Dedong He, Dingkai Chen, Zijun Huang, Jiguang Deng, Yongming Luo","doi":"10.1038/s43246-024-00656-4","DOIUrl":"10.1038/s43246-024-00656-4","url":null,"abstract":"Modulating unique microenvironment including both oxidation and metallic states on sub-nanocluster metal catalysts remains challenging, since designing heterogeneous catalysis within controllable oxidation state is necessary for achieving optimum performance. Here we construct stable sub-nano-Co clusters, which shows different microenvironment with the reported sub-nanocluster catalysts and reported Co-based catalysts. The coexistence of both ionic bonds of Co-O and metallic bonds of Co-Co shows features of multiple oxidation and metallic states, which changes the electronic orbital configuration of the individual Co atom in clusters. The specific microenvironment within low oxidation state and high electron density promotes combination of empty and filled host orbitals to yield high electron transfer between metal and propane, which exhibits higher reactivity than the reported Co-based and other non-noble metals catalysts. The desired reactivity offers the possibility for the exploitation of highly efficient non-noble metal catalysts for propane dehydrogenation in industrial applications. Designing heterogeneous catalysts with modulated microenvironments is important for optimum performance. Here, cobalt sub-nanoclusters with Co-O and Co-Co bonds show multiple oxidation and metallic states for propane dehydrogenation.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00656-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}