磁性韦尔半金属 Co3Sn2S2 中光学控制畴壁产生的巨大反对称磁阻

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki
{"title":"磁性韦尔半金属 Co3Sn2S2 中光学控制畴壁产生的巨大反对称磁阻","authors":"Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki","doi":"10.1038/s43246-024-00688-w","DOIUrl":null,"url":null,"abstract":"Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets. Domain walls in magnetic Weyl semimetals are a source of exotic transport owing to topologically protected domains with opposite chirality. Here, utilizing an optical technique to manipulate magnetic domains in Co3Sn2S2 Hall-bar devices, the authors discover giant antisymmetric magnetoresistance across a domain wall formed by serially connected upward- and downward-magnetized Weyl domains.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00688-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2\",\"authors\":\"Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki\",\"doi\":\"10.1038/s43246-024-00688-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets. Domain walls in magnetic Weyl semimetals are a source of exotic transport owing to topologically protected domains with opposite chirality. Here, utilizing an optical technique to manipulate magnetic domains in Co3Sn2S2 Hall-bar devices, the authors discover giant antisymmetric magnetoresistance across a domain wall formed by serially connected upward- and downward-magnetized Weyl domains.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00688-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00688-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00688-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性材料中的畴壁(DWs)承载着各种有趣的磁传输现象。最近针对磁性韦尔半金属(mWSMs)的畴壁提出的理论建议表明,由于具有相反手性的拓扑保护韦尔畴,会出现更为奇特的传输现象。然而,控制和表征 mWSM 中 DW 的技术尚未成熟到足以识别 DW 上电导的独特特征。在这里,通过采用光学技术操纵 mWSM Co3Sn2S2 霍尔条器件中的磁畴,我们发现了由上下磁化的 Weyl 磁畴串联形成的 DW 上产生的巨大非对称磁阻。这种现象源于霍尔角的大正切,而霍尔角的大正切与对置磁化韦尔域中的固有反常霍尔效应有关。此外,我们还通过系统控制 DW 的数量对 DW 电阻进行了定量评估。这些结果突出表明,Weyl DW 工程在拓扑磁体的高级研究中大有可为。由于具有相反手性的拓扑保护畴,磁性韦尔半金属中的畴壁是奇异传输的来源。在这里,作者利用光学技术操纵 Co3Sn2S2 霍尔条器件中的磁畴,发现了由上下磁化的韦尔畴串联形成的畴壁上的巨大不对称磁阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2

Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2
Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets. Domain walls in magnetic Weyl semimetals are a source of exotic transport owing to topologically protected domains with opposite chirality. Here, utilizing an optical technique to manipulate magnetic domains in Co3Sn2S2 Hall-bar devices, the authors discover giant antisymmetric magnetoresistance across a domain wall formed by serially connected upward- and downward-magnetized Weyl domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信