Low excess noise and high quantum efficiency avalanche photodiodes for beyond 2 µm wavelength detection

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hyemin Jung, Seunghyun Lee, Xiao Jin, Yifan Liu, Theodore. J. Ronningen, Christopher. H. Grein, John. P. R. David, Sanjay Krishna
{"title":"Low excess noise and high quantum efficiency avalanche photodiodes for beyond 2 µm wavelength detection","authors":"Hyemin Jung, Seunghyun Lee, Xiao Jin, Yifan Liu, Theodore. J. Ronningen, Christopher. H. Grein, John. P. R. David, Sanjay Krishna","doi":"10.1038/s43246-024-00627-9","DOIUrl":null,"url":null,"abstract":"The rising concentration of greenhouse gases, especially methane and carbon dioxide, is driving global temperature increases and exacerbating the climate crisis. Monitoring these gases requires detectors that operate in the extended short-wavelength infrared range (~2.4 µm), covering methane (1.65 µm) and carbon dioxide (2.05 µm) wavelengths. Here, we present a high-performance linear mode avalanche photodetector (APD) with an InGaAs/GaAsSb type-II superlattice absorber and an AlGaAsSb multiplier, matched to InP substrates. This APD achieves a room temperature gain of 178, an external quantum efficiency of 3560% at 2 µm, low excess noise (less than 2 at gains below 20), and a small temperature coefficient of breakdown (7.58 mV/K·µm). These results indicate that a manufacturable semiconductor material-based APD could significantly advance high-sensitivity receivers for greenhouse gas monitoring, potentially enabling their commercial production and widespread use. Photodetectors for monitoring greenhouse gas emissions must cover the extended short-wavelength infrared range. Here, antimonide-based materials on a InP substrate enable a high-performance avalanche photodiode with detectivity beyond 2 µm wavelength.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00627-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00627-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rising concentration of greenhouse gases, especially methane and carbon dioxide, is driving global temperature increases and exacerbating the climate crisis. Monitoring these gases requires detectors that operate in the extended short-wavelength infrared range (~2.4 µm), covering methane (1.65 µm) and carbon dioxide (2.05 µm) wavelengths. Here, we present a high-performance linear mode avalanche photodetector (APD) with an InGaAs/GaAsSb type-II superlattice absorber and an AlGaAsSb multiplier, matched to InP substrates. This APD achieves a room temperature gain of 178, an external quantum efficiency of 3560% at 2 µm, low excess noise (less than 2 at gains below 20), and a small temperature coefficient of breakdown (7.58 mV/K·µm). These results indicate that a manufacturable semiconductor material-based APD could significantly advance high-sensitivity receivers for greenhouse gas monitoring, potentially enabling their commercial production and widespread use. Photodetectors for monitoring greenhouse gas emissions must cover the extended short-wavelength infrared range. Here, antimonide-based materials on a InP substrate enable a high-performance avalanche photodiode with detectivity beyond 2 µm wavelength.

Abstract Image

用于 2 µm 以上波长检测的低过量噪声和高量子效率雪崩光电二极管
温室气体(尤其是甲烷和二氧化碳)浓度的上升正在推动全球气温上升,加剧气候危机。对这些气体的监测需要能在扩展的短波红外范围(~2.4 µm)内工作的探测器,其中包括甲烷(1.65 µm)和二氧化碳(2.05 µm)波长。在这里,我们展示了一种高性能线性模式雪崩光电探测器(APD),它采用 InGaAs/GaAsSb II 型超晶格吸收器和 AlGaAsSb 倍增器,与 InP 衬底相匹配。这种 APD 的室温增益为 178,2 µm 时的外部量子效率为 3560%,过量噪声低(增益低于 20 时小于 2),击穿温度系数小(7.58 mV/K-µm)。这些结果表明,可制造的基于半导体材料的 APD 可以大大推进温室气体监测用高灵敏度接收器的发展,并有可能实现其商业化生产和广泛应用。用于监测温室气体排放的光电探测器必须覆盖扩展的短波长红外范围。在这里,基于 InP 衬底的锑基材料实现了高性能雪崩光电二极管,其探测能力超过 2 微米波长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信